

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
RECOGNITION OF SHIP TYPES FROM AN INFRARED
IMAGE USING MOMENT INVARIANTS AND NEURAL

NETWORKS

by

Jorge Amaral Alves

March 2001

 Thesis Advisor: Neil C. Rowe
Second Reader: Robert B. McGhee

Approved for public release; distribution is unlimited.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE

March 2001
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE
Recognition of Ship Types From an Infrared Image Using Moment Invariants and Neural Networks
6. AUTHOR(S)

Alves, Jorge Amaral

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Brazilian Naval Commission
5130 MacArthur Blvd. N. W.
Washington, D.C. 20016-3344

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense, the U.S. Government or the Brazilian Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

 Autonomous object recognition is an active area of interest for military and commercial applications: Given an input image from
an infrared or range sensor, find interesting objects in those images and then classify those objects. In this work, automatic target
recognition of ship types in an infrared image is explored. The first phase segments the original infrared image in order to obtain the
ship silhouette. The second phase calculates moment functions of those silhouettes that guarantee invariance with respect to
translation, rotation and scale. The third phase applies those invariant features to a backpropagation neural network and classifies the
ship as one of five types. The algorithm was implemented and experimentally validated using both simulated three-dimensional ship
model images and real images derived from video of an AN/AAS-44V Forward Looking Infrared (FLIR) sensor.

15. NUMBER OF PAGES

120
14. SUBJECT TERMS

Automatic target recognition, artificial neural network, infrared image recognition, moment
invariants

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239.18

ii

Approved for public release; distribution is unlimited.

RECOGNITION OF SHIP TYPES FROM AN INFRARED IMAGE USING
MOMENT INVARIANTS AND NEURAL NETWORKS

Jorge Amaral Alves

Lieutenant Commander, Brazilian Navy
B.S., Brazilian Naval Academy, 1987

B.S.E.E., University of Sao Paulo, 1993
M.S.E.E., Federal University of Rio de Janeiro, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 2001

 Author:

Jorge Amaral Alves

Approved by:

Neil C. Rowe, Thesis Advisor

Robert B. McGhee, Second Reader

Dan Boger, Chairman
Department of Computer Science

iii

iv

ABSTRACT

Autonomous object recognition is an active area of interest for military and
commercial applications: Given an input image from an infrared or range sensor, find
interesting objects in those images and then classify those objects. In this work, automatic
target recognition of ship types in an infrared image is explored. The first phase segments
the original infrared image in order to obtain the ship silhouette. The second phase
calculates moment functions of those silhouettes that guarantee invariance with respect to
translation, rotation and scale. The third phase applies those invariant features to a
backpropagation neural network and classifies the ship as one of the five types. The
algorithm was implemented and experimentally validated using both simulated three-
dimensional ship model images and real images derived from video of an AN/AAS-44V
Forward Looking Infrared (FLIR) sensor.

v

vi

DISCLAIMER

The algorithms and computer programs developed in this research were not
exercised for all possible cases of interest. While every effort has been made, within the
time available, to ensure that the programs are free of computational and logic errors,
they cannot be considered validated. Any application of these programs without
additional verification is at the risk of the user.

vii

viii

TABLE OF CONTENTS

I. INTRODUCTION.. 1

A. AUTOMATIC TARGET RECOGNITION ... 1

B. APPLICATIONS OF AUTOMATIC OBJECT RECOGNITION................... 1

C. PROJECT GOALS ... 2

II. FEATURE SELECTION AND MOMENT INVARIANTS 5

A. OVERVIEW ... 5

B. MOMENT INVARIANTS ... 7

C. FEATURE VECTOR.. 9

III. THE ARTIFICIAL NEURAL NETWORK (ANN) CLASSIFIER................... 11

A. MOTIVATION... 11

B. MULTILAYER ANN AND THE BACKPROPAGATION RULE............... 12

IV. EXPERIMENT DESCRIPTION.. 15

A. PROGRAMMING ENVIRONMENT.. 15

B. THE THREE-DIMENSIONAL SHIP MODEL DATABASE....................... 15
1. The Three-Dimensional Ship Modeling .. 15
2. Viewpoint Control ... 22
3. Orthographic Projection... 23

C. THE REAL FLIR IMAGES DATABASE... 23
1. Domain Issues.. 23
2. Segmentation.. 28

D. TRAINING PHASE OF THE NEURAL NETWORK CLASSIFIER........... 30

E. TESTING PHASE .. 32

F. PROGRAMS DEVELOPED.. 32

V. RESULTS FROM EXPERIMENTATION... 37

A. EVALUATION STRUCTURE .. 37

ix

B. FIRST EXPERIMENT ... 37

C. SECOND EXPERIMENT .. 41

D. THIRD EXPERIMENT.. 47

E. FOURTH EXPERIMENT .. 48

F. FIFTH EXPERIMENT ... 49

VI. CONCLUSIONS .. 57

APPENDIX A. PROGRAM LISTING... 59

LIST OF REFERENCES... 101

BIBLIOGRAPHY... 105

INITIAL DISTRIBUTION LIST .. 107

x

ACKNOWLEDGMENT

I wish to express my gratitude to those who contributed to the successful and
timely completion of this research. First I would like to thank Professor Robert McGhee
for his help on indicating good algorithms for image feature extraction; also for his
dedication and thoroughness in reviewing the text and the technical content of this work.
Special recognition is due Mrs. Jean Brennan, the Computer Science Department
assistant, for his outstanding administrative work.

My deepest gratitude goes to Professor Neil Rowe for his patience, constant
guidance, cooperation, and most of all, for being a friend whose experience I could
always count upon.

Finally, I would like to thank my wife Margareth, my son Edgard and my
daughter Caroline for their support and understanding as I work in this thesis.

xi

I. INTRODUCTION

A. AUTOMATIC TARGET RECOGNITION

Automatic target recognition (ATR) is a technological discipline that deals with
the understanding, design, development, and production of techniques and hardware for
the classification of objects of interest as they are sensed by remote means, either actively
or passively. During the past several decades, numerous attempts have been made to
create such systems [Ref. 1-6]. However, progress in ATR has been slow [Ref. 7]
because some new problems have appeared. For example, the vision problem pushes the
fields of artificial intelligence, neural networks, microelectronics, sensors, and computer
science to their limits.

In any pattern recognition application, it is important to select features that
adequately and uniquely describe the objects to be recognized. Moreover, the features
associated with an object should be invariant with respect to the position, rotation, and
scale of that object in the field of view. Thus the ideal recognition system is robust to
orientation variations, scale variations and boundary perturbations [Ref. 8].

Our proposed approach is to use the moment invariants [Ref. 9] for the set of
features to quantify the object. The thesis reports the mathematical foundation of two-
dimensional moment invariants and shows that recognition schemes based on them could
be truly position, size and orientation-independent. Since the moments are global
features, application of such a feature space is limited to images with minimal
background and scenes containing only one object. Ships on the open sea are appropriate
for such feature spaces [Ref. 10]. The moment invariants are used to construct a feature
vector of low dimension, and recognition is performed using this feature vector applied to
a trained artificial neural network classifier.

B. APPLICATIONS OF AUTOMATIC OBJECT RECOGNITION

Automatic object recognition has diverse applications in numerous fields of
science and technology and is permeating many aspects of military and civilian

1

industries. It is popular within the field of robotic vision because of the limited domains
and the controllability of the environment in which they are used [Ref. 7].

In military applications and specifically naval applications, electro-optic and
infrared sensors have been connected to weapon systems. In several cases an ATR
algorithm is responsible for discriminating a target from a non-target object, enabling the
possible target destruction. Other systems address classification tasks where targets types
are determined. Another example is a Forward Looking Infrared (FLIR) sensor combined
with image-processing hardware for discriminating tanks from trucks, bushes, and other
environmental objects.

C. PROJECT GOALS

In this thesis, a fast and robust system is presented that classifies ships seen from
an arbitrary viewpoint and range in three-dimensional space. The approach is concerned
with segmented rigid bodies viewed without occlusion from other objects. However, self-
occlusion due to change of viewpoint is allowed.

Although object separation from background is a challenging task in general, our
application can be carried out with relative ease. This is the case because a ship has
usually a clear contrast with the background in Forward Looking Infrared (FLIR)
imagery. This greatly simplifies ship classification.

Our approach is model-based, meaning that the kinds of objects to be recognized
are known in advance and can be summarized in a set of models. The specific model
database we have implemented contains five classes of ships: destroyer, frigate, aircraft
carrier, research ship and merchant ship. This database was used in the training phase.
For each ship model and viewpoint, a silhouette was extracted and a moment-invariant
signature calculated consisting of a twelve-element feature vector.

Then for a ship image of unknown type, we compute its signature. Classification
is done using an artificial neural network. The neural-net classifier’s generalization
capabilities are used to group the moment-invariant signatures, corresponding to different
views of an object, into a single ship type class.

2

The proposed scheme is summarized in Figure 1 below.

Figure 1: Processing scheme of moment invariant recognition.

This thesis has been organized as follows: in Chapter II we present techniques for
feature extraction followed by mathematical foundations of moment invariants. In
Chapter III we present an artificial neural network as a classifier and the backpropagation
learning rule. Chapter IV details the input image database and the training and testing of
our system. Chapter V summarizes the results from the experimentation using simulated
images from three-dimensional ship models and real ship images from FLIR sensors.
Chapter VI contains concluding remarks.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

II. FEATURE SELECTION AND MOMENT INVARIANTS

A. OVERVIEW

An old adage says “Good Features make Good Recognizers” [Ref. 11]. This is
true whether your recognizer is using an artificial network or a statistical based decision
mechanism. So our project paid careful attention to feature extraction from ship images.

Many approaches have been advocated for features in automatic target
recognition. Present methods can be categorized as either global or local. Global methods
use global features of an object boundary or of an equivalent representation. Such
techniques are the Fourier descriptors (FD) [Refs. 1, 5], moments [Ref. 12] and
autoregressive models [Ref. 13]. Local methods use features such as critical points [Ref.
14] or high-resolution pursuit (HRP) [Refs. 8, 15].

For global-based approaches, there is a wide variety of published literature similar
to the approach described herein. Global methods have the disadvantage that a small
distortion in a section of a boundary of an object will result in changes to all global
features.

One early work is Dudani et al [Ref. 16], which used moment invariants for
feature extraction and a probabilistic approach for the classification of airplanes. Dudani
used six different aircraft types and the images were based on physical models. His
training set was based on over 3000 images taken in a 140o by 90o sector. The testing set
contained 132 images (22 images of each of the six classes) obtained at random viewing
aspects. The classification accuracy achieved in this six-class problem was 95%.

Later, Wallace and Wintz [Ref. 17] propose a technique similar to Dudani’s with
Fourier Descriptor (FD) of the silhouette boundary as features. The Fourier descriptor is
one method of describing the shape of a closed figure. Wallace and Wintz used a graphics
program to test their algorithm implementing three-dimensional models for six different
aircrafts. The graphics program approximated each airplane by using 50-100 planes.
Again, the evaluation was done using a randomly selected set and comparing to the
library of projections. However, they used only 143 projections for training (9.9 times
less than that used by Dudani et al) and the aircraft outlines were taken from a sector of

5

180o by 180o. Wallace and Wintz considered a bigger sector trying to avoid Dudani’s
approach, because if we delete the angles near the front view and rear view of the aircraft
the problem is much easier: shapes vary much more with slight rotations when viewed
almost edgewise [Ref. 17]. The maximum classification accuracy achieved by Wallace
and Wintz was 88.0%.

Reeves et al [Ref. 18] presents a geometrical-moment approach using moments of
the image that are normalized with respect to scale, translation and rotation. They call
them “standard moments”. The experiments described there were based on the same
software used by Wallace and Wintz. They also used the same six types of airplanes, the
same training set and the same testing set. However, they have chosen the moment
feature representation because Fourier descriptors (FD) are particularly sensitive to
perturbations in the object boundary. For example, the FD’s for the image of a disk differ
greatly from those for a disk with a tiny wedge missing. Reeves et al used two
classification criteria: the minimum Euclidean distance and the minimum Euclidean
distance after “variance balancing”. The best classification result was 93%.

More recent work of Khotanzad [Ref. 19] used global features derived from
complex orthogonal Pseudo-Zernike Moments (PZM). Khotanzad tested the performance
of PZM by recognizing 26 uppercase English characters (A to Z), typed and handwritten.
The database contained 624 images corresponding to 24 images per character. These
images were generated with arbitrarily varying scales, orientations, and translations. The
available samples were divided into halves. The first half was used for training and the
second for testing. There were 12 training images and 12 testing images per character.
His neural network classifier formed by 45 input nodes, 26 output nodes and 40 hidden
nodes got 100% of classification accuracy.

Systems using local features perform well in the presence of noise, distortion or
partial occlusion. The effects on an isolated region of the contour alter only the local
features associated with that region, leaving all the other local features unaffected.
However, the choice of representative local features is not trivial and the recognition
process based on local features is more computationally intensive and time consuming
[Ref. 2].

6

B. MOMENT INVARIANTS

Moment invariants are a reliable and versatile way to construct a feature vector of
low dimension as the basis for the neural-network classifier. Moments have been used as
pattern features in a number of applications [Ref. 9, 20] to recognize two-dimensional
image patterns.

The regular moments mpq of a digital image pattern represented by f(x,y) are
defined as:

Hu [Ref. 9] first introduced moments as image-recognition features. Using
nonlinear combinations of normalized central moments, he derived seven invariant
moments, which have the desirable property of being invariant under image translation,
scaling and rotation. The classic central moments that have the property of translation
invariance are:

Hu discovered these moments M1, M2, …, M7, are invariant under translation
and rotation:

M1 = μ20 + μ02 (3)

M2 = (μ20 – μ02)2 + 4μ2
11 (4)

M3 = (μ30 – 3μ12)2 + (3μ21 – μ03)2 (5)

M4 = (μ30 + μ12)2 + (3μ21 + μ03)2 (6)

M5 = (μ30 – 3μ12)(μ30 + μ12)[(μ30 + μ12)2 – 3(μ21 + μ03)2]

 + (3μ21 – μ03)(μ21 + μ03)[3(μ30 + μ12)2 – (μ21 + μ03)2] (7)

,...2,1,0, =qp)1(

∑∑=
y

qp

x
pq yxfyxm),()2(

∑∑ −−=
y

qp

x
pq yyxx)()(μ

00

01

00

10

m
m

yand
m
m

xwhere ==
,...2,1,0, =qp

7

M6 = (μ20 – μ02)[(μ30 + μ12)2 – (μ21 + μ03)2] + 4μ11(μ30 + μ12)(μ21 + μ03) (8)

M7 = (3μ21 – μ03)(μ30 + μ12)[(μ30 + μ12)2 – 3(μ21 + μ03)2]

 – (μ30 – 3μ12) (μ21 - μ03)[3(μ30 + μ12)2 – (μ21 + μ03)2] (9)

The functions M1 through M6 are invariant under rotation, reflection, or a
combination of rotation and reflection. This property helps to simplify the range of all
distinct views of the ships as explained in section D of chapter IV.

The above moments can be normalized to become invariant under a scale change
by using the radius of gyration r of a planar pattern [Ref. 16]:

r = (μ20 + μ02)1/2 (10)

The radius of gyration for a particular object from a particular angle of view is
directly proportional to the size of the image or inversely proportional to the distance B
of the object along the optical axis:

(μ20 + μ02)1/2 B = constant (11)

Therefore, the radius of gyration r can normalize the moment functions M2
through M7 to obtain size invariance, what Hu called the “normalized central moments”:

M1’ = (μ20 + μ02)1/2 B = r B (12)

M2’ = M2 / r4 (13)

M3’ = M3 / r6 (14)

M4’ = M4 / r6 (15)

M5’ = M5 / r12 (16)

M6’ = M6 / r8 (17)

M7’ = M7 / r12 (18)

8

C. FEATURE VECTOR

The above moments of an object can be computed for both the image boundary
and the solid silhouette. Minute details such as the shape of the stacks of a ship are better
characterized by the moments from the boundary. Gross structural features of the ship are
better characterized by moments derived of silhouette; also, these moments are less
susceptible to noise [Ref. 16].

In our system, two sets of six moment invariant functions (M2’, M3’, M4’, M5’,
M6’ and M7’), six from the boundary and six from the silhouette, were computed. As the
distance B of the object along the optical axis was not known, the M1’ component was
not used. The twelve-component feature vector was sent to the neural network classifier
for the recognition phase.

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

III. THE ARTIFICIAL NEURAL NETWORK (ANN) CLASSIFIER

A. MOTIVATION

Over the past few years, an explosion of interest in ANN models and their
applications has occurred [Ref. 21, 22, 23]. ANNs posses a number of properties which
make them particularly suited to complex classification problems [Ref. 22, 25, 26].
Unlike traditional classifiers, ANN models can examine numerous competing hypotheses
simultaneously using massive interconnections among many simple processing elements.
In addition, ANNs perform extremely well under noise and distortion.

The implementation of a model-based target recognition scheme using ANNs
seems to be attractive. First of all, ANNs provide their own way to represent the
knowledge that they store [Ref. 27]. In addition, the complexity and the computational
burden increase slowly as the number of data models increases.

Although ANN’s performance is excellent, many researchers still criticize ANNs
because they can require much training time before they can perform a specific task.
However, in our automatic target recognition classifier, the recognition phase is of far
more importance and it must run as quickly and accurately as possible; the training phase
can be performed off-line.

In this thesis specifically, a three-layer perceptron neural network [Ref. 28]
trained with the backpropagation learning rule [Ref. 29] was implemented. In this
scheme, expensive storage of a multiview database is not needed since during training the
neural net extracts all the relevant information from the library. Also, due to the
generalization capability of the neural net, good results can be obtained even with a small
number of views in the library.

11

B. MULTILAYER ANN AND THE BACKPROPAGATION RULE

Artificial neural networks were developed by modeling a biological neuron. A
generic neuron is formed by “cell body”, “dendrites” and “axon”. The electrical signals
arrive in a neuron by the dendrites and are passed to the cell body where they are added.
If a threshold is achieved, the neuron is activated and the information is passed to the
axon. The axon is the transmission line of the neuron. The axon will pass the information
to the chemical synapses connections. The learning process will be responsible for
increasing the synaptic strength, which measures the degree of coupling between two
neurons.

Many neuron models appear in the literature. The beginning of the development
of neural network models is related to the paper of Warren McCulloch and Walter Pitts
published in 1943. They studied the implementation of logical functions using artificial
neurons. The mathematical model of the neuron proposed by McCulloch-Pitts, shown in
Figure 2 below, assumes the function realized by the cell body as being a “step function”
applied to the summation of the weighted inputs. The weights control the importance of
each input.

Neuron

f w xh i i
x

n

=
∑⎡
⎣
⎢

⎤

⎦
⎥

0

w1

wnxn

w0x0

x1
.
.

Figure 2: McCulloch-Pitts Model.

The McCulloch-Pitts model applied to a single layer of neurons (perceptrons)
cannot solve problems where the inputs cannot be linearly separated. The PDP group in
their collection of papers [Ref. 28] proposed modifications to the previous model. The
step function was replaced by a function that is monotonic, differentiable and smooth
(often implemented by a sigmoid). The learning algorithm used is “backpropagation”.

12

Artificial neural networks (ANN) are specified by the topology of the network,
the characteristics of the nodes (neurons) and the learning algorithm. The topology of a
multilayer ANN is a structured hierarchical layered network as shown in Figure 3 below:

.

.

.

Connections

Nodes

. . ..
.
.

O
U
T
P
U
T

D
A
T
A

.

.

.

.

.

.

I
N
P
U
T

D
A
T
A

 Figure 3: Multilayer neural-network graph.

It consists of several layers of nodes, and usually an input layer and an output
layer. Between the input layer and the output layer, we have one or more “hidden” layers
of nodes. Hidden nodes often represent domain knowledge useful for solving recognition
tasks [Ref. 27]. Generally, each node in one layer is interconnected with all the nodes in
adjacent layers with connections (synapses). Each connection is associated with a weight,
which measures the degree of interaction between the corresponding nodes.

A general L-layered feed-forward artificial neural network consists of N0 input
nodes and NL output nodes. The number of nodes in the hidden layers is Nk for 1<k<L-1.
In this notation, the input layer is not counted as a layer. So an L-layer feed-forward
artificial neural network has L-1 hidden layers and the Lth layer is the output layer. In
this thesis, we implemented a 2-layered (L=2) feed-forward artificial neural network with
N0=12 (the moment invariant feature vector) and N2=5 (five ship types). The number of

13

hidden nodes was found in order to maximize the neural net performance, as detailed in
Chapter V.

The algorithms for multilayer ANN processing can be divided into two phases:
retrieving and learning. In the retrieving phase of the algorithm, information flows from
the input layer through the hidden layers to the output layer. The nodes update their own
activation values based on the system dynamics. In the learning phase, modification of
the weights corresponding to the connection edges takes place. In this thesis, the popular
backpropagation rule [Ref. 28] learning algorithm is used. This algorithm performs
supervised learning; in each step it adjusts the connection weights, minimizing the mean-
square error between the target value (the desired) and the output value (the actual) if the
network.

During the retrieving phase, we present continuous valued input data x1, x2, …,
xn0 called exemplar patterns and the corresponding desired output data t1, t2, …, tnL called
target patterns. Input data are propagated forward through the network, which computes
the activation value for each node, until the output layer is reached.

The learning phase involves a backward pass through the network during which
the error signals produced at the output layer are passed to each node in the network and
appropriate weight changes are made. For each weight, the gradient of the output error
with respect to that weight is computed. The weight is changed in the direction that
reduces the error.

14

IV. EXPERIMENT DESCRIPTION

A. PROGRAMMING ENVIRONMENT

Our Automatic Recognition Algorithm was based on programs written in
MATLAB 5.3.0 from MathWorks. MATLAB is a complete computing environment for
the interactive analysis and visualization of data, integrating an array-oriented language
with mathematical analysis and graphical display techniques. The neural-network
programs used in this thesis were implemented using functions from the MATLAB
Neural Network Toolbox. The three-dimensional model and all image analysis were
performed using the MATLAB Image Processing Toolbox.

Although MATLAB is an interpretative language, it is possible to translate all
MATLAB source codes into C code and create executable files using the MATLAB C
Compiler. Consequently, our Target Recognition System could be used in a real-time
application.

B. THE THREE-DIMENSIONAL SHIP MODEL DATABASE

1. The Three-Dimensional Ship Modeling

This section will describe our implementation of three-dimensional ship models.
The three-dimensional wire-frame models represent a graphics object by connected
polygons or faces. The model is defined by specifying the coordinates of the vertices of
each polygon and then specifying the faces by connecting the specified vertices in a
specific order. This three-dimensional modeling was based on a MATLAB function
called “patch” (see “findInputSet.m” in the Appendix A).

Five ship types were chosen to be included in the recognition class and therefore
be modeled: namely, an aircraft carrier, a frigate, a destroyer, a research ship (Point Sur),
and a merchant ship. With these five types, it was possible to address a typical scenario at
sea, where we can find military ships, small civilian ships and big merchant ships.

The three-dimensional wireframe model for the aircraft carrier was based on a
1:1800 scaled drawing of the Carl Vinson aircraft carrier (Nimitz Class) [Ref. 30]. This
drawing is shown in Figure 4 and a picture of the Carl Vinson aircraft carrier is shown in

15

Figure 5. The model was implemented manually since no CAD model was available. It
was formed of 45 vertices and 34 planes (see the “aircraft.m” program in Appendix A).
Figure 6 shows the model from four view angles.

Figure 4: Scaled drawing of the Carl Vinson aircraft carrier [From Ref.30].

 Figure 5: Picture of the Carl Vinson aircraft carrier [From Ref. 30].

16

Figure 6: The aircraft carrier three-dimensional model in four view angles.

The three-dimensional wireframe model for the destroyer was based on a 1:1500
scaled drawing of the Oscar Austin destroyer (Arleigh Burke Class) [Ref. 30]. This
drawing is shown in Figure 7 and a picture of the Oscar Austin destroyer is shown in
Figure 8. The destroyer model was formed of 92 vertices and 57 planes (see the
“destroyer.m” program in Appendix A). Figure 9 shows the model from four view angles.

Figure 7: Scaled drawing of the Oscar Austin destroyer [From Ref.30].

 Figure 8: Picture of the Oscar Austin destroyer [From Ref.30].

17

 Figure 9: The destroyer three-dimensional model in four view angles.

The three-dimensional wireframe model for the frigate was based on a 1:1200
scaled drawing of the Rentz frigate (Oliver Hazard Perry Class) [Ref. 30]. This drawing
is shown in Figure 10 and a picture of the Oscar Austin destroyer is shown in Figure 11.
The frigate model was formed of 130 vertices and 66 planes (see the “frigate.m” program
in Appendix A). Figure 12 shows the model from four different view angles.

 Figure 10: Scaled drawing of the Rentz frigate [From Ref.30].

 Figure 11: Picture of the Rentz frigate [From Ref.30].

18

Figure 12: The frigate three-dimensional model in four view angles.

The three-dimensional wireframe model for the Merchant Ship was based on a
scaled drawing of the Sea Isle City U.S. Tanker [Ref. 31]. This drawing is shown in
Figure 13 and a picture of the Sea Isle City U.S. tanker is shown in Figure 14. The
merchant model was formed of 100 vertices and 58 planes (see the “merchant.m”
program in Appendix A). Figure 15 shows the model viewed from four view angles.

 Figure 13: Scaled drawing of the Sea Isle City tanker [From Ref.31].

19

20

 Figure 14: Picture of the Sea Isle City tanker [From Ref.31].

Figure 15: The merchant three-dimensional model in four different view angles.

The three-dimensional wireframe model for the research ship was based on
general specifications and dimensions extracted from R/V Point Sur Cruise Planning
Manual (see Figure 16). The research ship model was formed of 76 vertices and 32
planes (see the “poitsur.m” program in Appendix A). Figure 17 shows the model viewed
from four view angles.

 Figure 16: Picture of the R/V Point Sur.

Figure 17: The Point Sur three-dimensional model in four view angles.

21

2. Viewpoint Control

 To extract silhouettes, the orientation of the three-dimensional ship model must
be specified. It was possible to specify the viewpoint with the MATLAB “view”
command by defining azimuth and elevation with respect to the axis origin. Azimuth is a
polar angle in the x-y plane, with positive angles indicating counter-clockwise rotation of
the viewpoint. Elevation is the angle above (positive angle) or below (negative angle) the
x-y plane. The counter-clockwise concept for the azimuth was adopted because the
viewing azimuth is the negative of the ship’s heading. Therefore, a ship with heading of
300 clockwise is equivalent to viewing that ship with azimuth of 300 counter-clockwise.
The diagram in Figure 18 illustrates the coordinate system. The arrows indicate positive
directions. The origin was assumed to be located approximately in the center of gravity of
the ship model. Only the portion above sea level was considered. Using this coordinate
system, we can verify that the broadside view of any ship model corresponds to 00 in
azimuth and 00 in elevation, in this situation the bow direction will be to the right
(positive x).

Figure 18: Diagram illustrating the coordinate system and the ship model origin.

One view of each of the five modeled ships is illustrated in Figure 19. In this
figure, the azimuth angle is –37.5 degrees and the elevation angle is 30 degrees.

22

Figure 19: Views of the three-dimensional ship models (az.=-37.5o, elev.=30o).

3. Orthographic Projection

Once the three-dimensional model is created and the aspect angle is set using the
“view” command, a silhouette can be created by projecting the three-dimensional ship
model. The orthographic method projects the viewing volume as a rectangular
parallelepiped onto a plane, i.e., relative distance from the camera does not affect the size
of objects. Using orthographic projection it is possible to get a good approximation of the
real process of image generation when the distance from the object to the camera is much
greater than the relative deep of the object structural points. This applies to our task
because ships are generally far away from the FLIR sensors. Figure 20 shows some
silhouettes created using the orthographic projection applied to the images shown in
Figure 19.

 Figure 20: Silhouettes created using the images of Figure 19.

C. THE REAL FLIR IMAGES DATABASE

1. Domain Issues

We also obtained real images taken at sea using the AN/AAS-44V Forward-
Looking Infrared (FLIR) sensor, mounted on a springboard at the nose of the SH-60B

btained real images taken at sea using the AN/AAS-44V Forward-
Looking Infrared (FLIR) sensor, mounted on a springboard at the nose of the SH-60B

23

Rapid Deployment Kit equipped helicopter. The FLIR images were available through a
VHS-format videotape showing several ships. However, only images of our modeled
ships were considered for our analysis. The FLIR images show good contrast and were
displayed in black-hot (higher temperatures areas are black) format. Image frames were
acquired using a commercial video-grabber board installed in a PC-type desktop
computer.

The real FLIR images that we extracted from the videotapes were used to test our
recognition system, previously trained with the three-dimensional ship model data. This
was considered particularly important since presenting the classifier with new images
with blurriness and an unknown target viewpoint is challenging.

Only 25 real FLIR images were used for testing due to the small number of
modeled ships in the FLIR tape. These were: two destroyer images (Figure 21), four
aircraft carrier images (Figure 22), 15 merchant ship images (Figure 23), four research
ship images (Figure 24), and no frigate images.

 Figure 21: Real FLIR images of destroyers

24

 Figure 22: Real FLIR images of aircraft carrier class.

25

 Figure 23: Real FLIR images of merchant ship class.

26

 Figure 24: Real FLIR images of research ship class.

The quality of the images was not ideal because the FLIR system projects
alphanumeric data and targeting aids onto the screen. Figure 25 shows one of the FLIR
images. Specifically, the crosshairs partially obscure the ship image and interfere with the
classification process. A segmentation was necessary to eliminate the background
including the alphanumeric data.

27

 Figure 25: FLIR image of the Arleigh Burke Destroyer.

2. Segmentation

Prior to computing the moment invariants of the ship of the Figure 25, we must
suppress the background and extract the ship silhouette. In this segmentation, we
employed histogram and thresholding techniques.

We assume that the extracted 320x240 pixels image contains one ship only. This
image includes the ship, water, alphanumeric data, and may include the sky. As the first
step, we generated the gray-level histogram of the image and selected a threshold level
that best extracted the ship from the water region. Figure 26 shows the histogram of
Figure 25.

28

 Figure 26: Gray-level histogram of Figure 21.

In this image, the average brightness for the water region is greater than that for
the ship region. If we had a sky region in this picture, the values in the sky region would
be lower than in the ship region. The histogram profile was analyzed and it was verified
that the highest peak was related to the water portion of the image. It was also verified
that the first peak left of the highest was related to the ship. The region between the “ship
peak” and the “water peak” was a transition region; the threshold value selected
corresponded to the minimum in the transition region. In Figure 26, those values are
water peak= 95, ship peak= 65 and threshold= 72. The original image was thresholded at
that value and a binary image generated. Figure 27 shows the result for Figure 25.

29

 Figure 27: Binary image thresholded at level 72 using Figure 25.

In a second step, we eliminated spurious pixels by extracting the greatest
connected region and filling the holes (see segmentation.m in Appendix A). The final
ship silhouette found for Figure 25 is shown if Figure 28.

 Figure 28: Silhouette found after cleaning up Figure 27.

D. TRAINING PHASE OF THE NEURAL NETWORK CLASSIFIER

The neural network ship classifier required a training phase using representative
projective views. As explained in Section B of Chapter II, the moment functions

30

invariance under reflection helps to simplify the range of all representative views distinct
ship views. Three-dimensional objects which possess symmetry about a plane, such as a
ship, can have its significant range of distinct views for azimuth restricted to [-90o, 90o],
where 0o corresponds to the broadside ship silhouette [Ref. 16]. Elevation angles were
restricted to the upper hemisphere with 45 degrees as the upper operational limit, as the
helicopter will be viewing the ship with lower elevation angles.

One training set and two testing sets of projections were generated. The training
set was 48 views of each of the five ship types taken at viewpoints separated by 15o in a
180ox45o sector; i.e., { (θ, α), θ = -90o, -75o, -60o, …, 75o; α = 0o, 15o, 30o, 45o } where θ
and α represent azimuth and elevation angles respectively. Examples of the training
images are in Figure 29 below. In this figure, the elevation angle is 15o and the azimuth
angles from left to right are: -90o, -60o, -30o, 0o, 30o, and 60o. The ship types from top to
bottom are aircraft carrier, destroyer, frigate, merchant, and research ship.

Figure 29: Examples of the training images for each modeled ship

31

E. TESTING PHASE

There were two testing sets; 41400 silhouettes projected from the three-
dimensional ship models and the 25 real FLIR images. The first test set contains 8280
views of each of the five ship models taken at viewpoints separated by 1o in azimuth and
1o in elevation; i.e., {(θ,α), θ = -90o, -89o, -88o, …, 89o ; α = 0o, 1o, 2o, …, 45o } where θ
and α represent azimuth and elevation angles respectively. Although this set contains the
training set, the number of training views was very small (96 views) to compromise the
simulation results. The real image test set was described earlier.

F. PROGRAMS DEVELOPED

All 16 programs were written in MATLAB. They can be divided in four
categories (see Table 1 and Appendix):

- Three-dimensional ship modeling: specialized functions used to create
the three-dimensional models used in other programs;

- Moment invariant computation: programs used to calculate the
moment invariants of a specific ship silhouette;

- Neural network training: programs used to train the neural network
implemented; and

- Testing: programs used to evaluate the performance of the system
implemented.

32

Name Type Function

aircarrier.m Create the model for aircraft carrier

destroyer.m Create the model for destroyer

frigate.m Create the model for frigate

pointsur.m Create the model for research ship

merchant.m

Three-
dimensional
ship
modeling
programs

Create the model for merchant ship

findInputMomSet.m Returns the 12-element input set

find_mom_functions.m Returns the six moment functions values

find_moment.m Returns the central moment

find_centroid.m

Moment
invariants
computation
programs

Returns the centroid of a silhouette

mainShipRecon.m Creates and trains a neural network
responsible for recognizing ship types

findInputSet.m

Neural
network
training
programs Returns all the silhouettes to be used by

the neural network during training phase

33

interface.m Create a Graphical User Interface to
evaluate the system implemented. Three
ship silhouettes are shown in the
interface: (1)the original silhouette, (2)the
rotated, scaled and noisy silhouette
defined by the user, and (3)the neural
network guessed silhouette

plotSilhouette.m Draws the ship silhouette inside the
Graphical User Interface

segmentation.m Segments a FLIR real image using a
histogram and threshold technique

createTestSet.m Creates 05 mat files containing the
silhouettes of each ship for increments of
one degree in azimuth and elevation,
then plots the errors

findResultSet.m

Testing
programs

Returns a vector with the size of all the
viewangles being tested, where "1" will
mean misclassified and "0" will mean
correct classified

 Table 1: Programs implemented

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

V. RESULTS FROM EXPERIMENTATION

A. EVALUATION STRUCTURE

Experiments were carried out in order to evaluate the proposed system. For this
purpose, the five ship models detailed in chapter IV were used. The parameters generally
used to characterize the overall performance of an automatic target recognition system
are the probability a given ship is correctly recognized (recall) and probability a given
type identification is correct (precision). By classification is meant recognition, the
determination of the target type. Performance data is generally given in the form of a
confusion matrix together with the size of the feature vector and database.

Using the probability of correct classification as a reference and the simulated
three-dimensional ship model images as a database, it was possible to iteratively optimize
our system. This optimization was achieved in three distinct experiments.

B. FIRST EXPERIMENT

The first experiment was implemented as described in chapter IV. Experiments
were performed with simulated 12-components moment invariants signatures from the
models. The six moment invariants of the solid silhouette and the six moment invariants
of the boundary make up the signature vector, as described in chapter II. The training
signatures were generated from images of the three-dimensional models taken at a regular
pace of 15 degrees in azimuth increments and in four different viewing elevation angles:
0o, 15o, 30o and 45o. The total training set was 48 images.

The testing set contained the images of the three-dimensional models taken at a
regular pace of 1o in azimuth increments and using the same four elevation angles used
during training. The neural network used was small, with only 20 hidden neurons and a
single hidden layer. Backpropagation was used as the training technique. The network
was successfully trained. This network yielded 90.1% discrimination leaving an overall
approximate 10% error rate. Details of the experiment are summarized in Table 2.

37

Network Parameters Network-1

input nodes 12

nodes in hidden layer 20

output nodes 5

training set 240 (12 x 4 x 5)

test set 3600 (180 x 4 x 5)

Accuracy 90.1%

 Table 2: Neural network for experiment 1

The first experiment enabled us to analyze the azimuth behavior of the neural net
generalization capability. For this purpose, we plotted for each ship type the classification
error percentage with respect to azimuth (Figures 30 to 32).

 Figure 30: Accuracy with respect to azimuth for aircraft carrier

38

Figure 31: Accuracy with respect to azimuth variation for destroyer and frigate

39

Figure 32: Accuracy with respect to azimuth variation for Point Sur and merchant
ship

40

Analyzing the results of these graphs, we can verify that the major errors were
related to high azimuth angles. This error pattern helped us to decide to use an unevenly
spaced training set. In the second experiment, we increased the number of azimuth
training angles by using small steps (5o) in high azimuth angles.

C. SECOND EXPERIMENT

In the second experiment, we increased the number of training azimuth angles by
using an unevenly spaced training set. For low azimuth angles (-45o to 45o), we kept the
15o step, but for high azimuth angles we chose a smaller step of 5o .The new training set
contained 96 views of each of the five ship types taken at the following viewpoints: {(θ,
α), θ = -90, -85, -80, -75, -70, -65, -60, -55, -50, -45, -30, -15, 0, 15, 30, 45, 50, 55, 60,
65, 70, 75, 80, 85; α = 0, 15, 30, 45}, where θ and α represent azimuth and elevation
angles respectively.

The neural network and testing set were the same used in the first experiment. We
obtained 91.2% accuracy. We also tried another neural network architecture with 30
hidden nodes and the classification rate improved to 94.8%. Details of these experiments
are summarized in Table 3.

Network Parameters Network-2 Network-3

input nodes 12 12

nodes in hidden layer 20 30

output nodes 5 5

training set 480 (24 x 4 x 5) 480 (24 x 4 x 5)

test set 3600 (180 x 4 x 5) 3600 (180 x 4 x 5)

Accuracy 91.2% 94.8%

 Table 3: Neural networks for experiment 2

As we can see in Table 3, with a bigger training set and 30 hidden neurons the
neural network-3 yielded the best accuracy. Figures 33 to 35 show the classification
error percentage with respect to azimuth for network-3.

41

Figure 33: Accuracy with respect to azimuth for aircraft carrier and destroyer

42

Figure 34: Accuracy with respect to azimuth for frigate and Point Sur

43

 Figure 35: Accuracy with respect to azimuth for merchant ship

To analyze the elevation behavior of the neural network-3, we graphed, for each
ship type, the classification error percentage with respect to elevation. Views of the three-
dimensional model were calculated in increments of 1o in elevation, starting with 0o and
ending with 45o, and using the same 24 azimuth angles used during training phase of
network-3 (Figures 36 to 38).

Analyzing Figures 36 to 38, we can verify that the major errors were related to
small elevation angles. This elevation error pattern inspired us to perform the third
experiment, this time we increased the number of elevation training angles. The idea was
to improve the classification accuracy of network-3 by training with more elevation
angles.

44

Figure 36: Accuracy with respect to elevation for aircraft carrier and destroyer

45

 Figure 37:Accuracy with respect to elevation for frigate and Point Sur

46

 Figure 38:Accuracy with respect to elevation for merchant ship

D. THIRD EXPERIMENT

To improve the classification accuracy of network-3 we increased the number of
elevation angles used for training in a third experiment. The new training set contains 168
views of each of the five ship types taken at the following viewpoints: {(θ, α), θ = -90o, -
85o, -80o, -75o, -70o, -65o, -60o, -55o, -50o, -45o, -30o, -15o, 0o, 15o, 30o, 45o, 50o, 55o, 60o,
65o, 70o, 75o, 80o, 85o; α = 0o, 7o, 15o, 22o, 30o, 45o}, where θ and α represent azimuth
and elevation angles respectively. The neural network and testing set were the same used
before. We obtained 85.4% discrimination leaving an overall 14.6% error rate (Table 4).

This new architecture presented worse results because the neural network did not
converge during the training phase using the backpropagation algorithm. This
convergence problem was due to the large number of the training samples.

47

Network Parameters Network-4

input nodes 12

nodess in hidden layer 30

output nodes 5

training set 720 (24 x 6 x 5)

test set 3600 (180 x 4 x 5)

Accuracy 85.4%

 Table 4: Neural network for experiment 3

E. FOURTH EXPERIMENT

The third experiment has proved that the neural network-3 (accuracy of 94.8%)
was our optimized solution. Thus, it was adopted for testing with the whole set of model
images and with the real FLIR images.

The fourth experiment was to apply our approach to a large final testing set. This
final set contained the images of the three-dimensional ship models taken at a regular
pace of 1o in azimuth and elevation increments, totaling 41400 images (180 x 46 x 5).
This experiment was performed using the neural network-3, from the second experiment.
The average classification accuracy achieved was 87.3%. Table 5 shows the confusion
matrix of counts.

48

 Inferred
. Type
Input
Type.

Aircraft
Carrier

Destroyer Frigate Point
Sur

Merchant Accuracy

Aircraft
Carrier

6711 201 425 393 550 81.1%

Destroyer 318 7301 397 257 7 88.2%

Frigate 345 788 6809 217 121 82.2%

Pointsur 67 146 177 7873 17 95.1%

Merchant 297 188 291 49 7455 90.0%

Precision 86.7% 84.7% 84.1% 89.6% 91.5%

Overall probability of classification: 87.3%

Table 5: Confusion matrix for 41,400 views of modeled images and network-3

F. FIFTH EXPERIMENT

We also ran the system on the 25 real FLIR images, as described in chapter IV.
This experiment was also performed using the neural network-3, from the second
experiment. The average classification accuracy achieved was 68%. Table 6 shows the
confusion matrix of counts.

 Inferred
. Type
Input
Type

Aircraft
Carrier

Destroyer Point
Sur

Merchant Recall

Aircraft
Carrier

3 0 0 1 75%

Destroyer 0 2 0 0 100%

Pointsur 0 1 3 0 75%

Merchant 6 0 0 9 60%

Precision 33.3% 66.6% 100% 90%

Overall probability of classification: 68%

Table 6: Confusion matrix for real ship FLIR images and network-3.

49

Figures 39 to 44 show all the FLIR images and respective results. The first
columns show the original FLIR images; the middle columns show the silhouettes after
the segmentation process; and the third columns show the neural network’s guess.

 Figure 39: Classification results for aircraft carrier FLIR images

50

 Figure 40: Classification results for merchant FLIR images

51

 Figure 41: Classification results for merchant FLIR images

52

 Figure 42: Classification results for merchant FLIR images

53

 Figure 43: Classification results for point sur FLIR images

54

55

 Figure 44: Classification results for destroyer FLIR

THIS PAGE INTENTIONALLY LEFT BLANK

56

VI. CONCLUSIONS

This thesis explored a moment-based method for ship-type recognition.
Numerical simulations were carried out with a set of five three-dimensional ship models.
Moment-invariant signatures were used as the input to a neural-network classifier. The
classifier achieved a 87.5% correct classification rate (within the set of test-models) for a
complete range of point of view around the input ship model. The success is due to a
combination of a robust feature extraction and the neural-network generalization
capability.

A test with 25 real FLIR ship images was also done. Experimental results were
worse due to the noisy extracted silhouettes. The maximum classification accuracy of
68% should only be considered a rough approximation to the sort of accuracies one can
expect from a fully operational classifier.

A larger database of real FLIR ship images needs to be tested. The acquisition
process should eliminate undesired alphanumeric data superimposed on the FLIR images.
Using this database, our system could be trained using the real FLIR images from
different viewpoints, and this could provide better performance on new real images.
Another recommendation is to investigate different segmentation algorithms capable of
addressing some predictable distortions like the ship shadow/reflection on the sea surface
and the smoke coming out from stacks. As we can see in Figure 35, the merchant FLIR
images presented the worst accuracy due to these distortions.

In conclusion, this thesis demonstrated how ship recognition using models is
complicated by the imaging process, which involves a viewpoint-dependent two-
dimensional projection of three-dimensional ship model. As a consequence, the
appearance of a ship in an image can vary greatly with its aspect and scale. Ship
recognition from infrared images is further complicated because the extracted ship
silhouettes can be noisy due to the distortions caused by shadows, smoke, and other
factors.

This thesis demonstrated the potential of a simple algorithm for this particular
application. The modest requirements in terms of computer and FLIR hardware of this
system show great potential for providing a recognition system to a variety of users.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

APPENDIX A. PROGRAM LISTING

%===
% Naval Postgraduate School - CA
%
% Type : Function
% Name : aircarrier.m
% Function : returns the vertices and faces to be used by the MATLAB function
% "patch" and construct the aircraft carrier 3-D model
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function [verts,faces]=aircarrier();

verts=[122, -7, 0 %l
 122, 7, 0 %2
 116, 1, -7 %3
 114, 0, -12 %4
 116, -1, -7 %5
 77, -10, 0 %6
 77, -10, -7 %7
 77, -8, -12 %8
 68, -10, -7 %9
 68, -21, 0 %10
 -23, -21, 0 %11
 -23, -10, -7 %12
 -62, -10, 0 %13
 -62, -10, -7 %14
 -60, -8, -12 %15
 -62, 10, 0 %16
 -62, 10, -7 %17
 -60, 8, -12 %18
 -36, 12, 0 %19
 -36, 10, -7 %20
 -28, 21, 0 %21
 -28, 10, -7 %22
 38, 21, 0 %23
 38, 10, -7 %24
 65, 24, 0 %25
 65, 10, -7 %26
 77, 10, 0 %27
 77, 10, -7 %28
 77, 8, -12 %29
 -7, -19, 0 %30
 -7, -19, 9 %31
 -7, -15, 9 %32
 -7, -15, 0 %33
 7, -19, 0 %34
 7, -19, 9 %35
 7, -12, 9 %36
 7, -12, 0 %37
 -1, -17, 9 %38
 -1, -17, 20 %39
 -1, -15, 20 %40
 -1, -15, 9 %41
 1, -17, 9 %42

59

 1, -17, 20 %43
 1, -15, 9 %44
 1, -15, 20];%45

 %number = 32 12

 plane1 = [1,2,3,4,5,5,5,5,5,5,5,5];
 plane2 = [1,5,6,6,6,6,6,6,6,6,6,6];
 plane3 = [5,6,7,7,7,7,7,7,7,7,7,7];
 plane4 = [4,5,7,8,8,8,8,8,8,8,8,8];
 plane5 = [6,9,7,7,7,7,7,7,7,7,7,7];
 plane6 = [6,10,9,9,9,9,9,9,9,9,9,9];
 plane7 = [9,10,11,12,12,12,12,12,12,12,12,12];
 plane8 = [11,12,13,13,13,13,13,13,13,13,13,13];
 plane9 = [12,13,14,14,14,14,14,14,14,14,14,14];
 plane10 = [7,9,12,14,15,8,8,8,8,8,8,8];
 plane11 = [13,16,17,14,14,14,14,14,14,14,14,14];
 plane12 = [14,17,18,15,15,15,15,15,15,15,15,15];
 plane13 = [16,19,20,17,17,17,17,17,17,17,17,17];
 plane14 = [19,21,22,20,20,20,20,20,20,20,20,20];
 plane15 = [21,23,24,22,22,22,22,22,22,22,22,22];
 plane16 = [23,25,26,24,24,24,24,24,24,24,24,24];
 plane17 = [25,27,26,26,26,26,26,26,26,26,26,26];
 plane18 = [26,27,28,28,28,28,28,28,28,28,28,28];
 plane19 = [27,3,28,28,28,28,28,28,28,28,28,28];
 plane20 = [27,2,3,3,3,3,3,3,3,3,3,3];
 plane21 = [28,3,4,29,29,29,29,29,29,29,29,29];
 plane22 = [17,20,22,24,26,28,29,18,18,18,18,18];
 flightdeck = [1,6,10,11,13,16,19,21,23,25,27,2];
 bottom = [4,8,15,18,29,29,29,29,29,29,29,29];
 tower1 = [30,31,32,33,33,33,33,33,33,33,33,33];
 tower2 = [30,31,35,34,34,34,34,34,34,34,34,34];
 tower3 = [34,35,36,37,37,37,37,37,37,37,37,37];
 tower4 = [32,33,37,36,36,36,36,36,36,36,36,36];
 tower5 = [31,32,36,35,35,35,35,35,35,35,35,35];
 mast1 = [38,39,40,41,41,41,41,41,41,41,41,41];
 mast2 = [38,39,43,42,42,42,42,42,42,42,42,42];
 mast3 = [42,44,45,43,43,43,43,43,43,43,43,43];
 mast4 = [41,44,45,40,40,40,40,40,40,40,40,40];
 mast5 = [39,43,45,40,40,40,40,40,40,40,40,40];
 %faces

 faces=[plane1
 plane2
 plane3
 plane4
 plane5
 plane6
 plane7
 plane8
 plane9
 plane10
 plane11
 plane12
 plane13
 plane14
 plane15
 plane16
 plane17
 plane18

60

 plane19
 plane20
 plane21
 plane22
 flightdeck
 bottom
 tower1
 tower2
 tower3
 tower4
 tower5
 mast1
 mast2
 mast3
 mast4
 mast5];
%===
% End of file aircarrier.m

61

%===
% Naval Postgraduate School - CA
%
% Type : Function
% Name : destroyer.m
% Function : returns the vertices and faces to be used by the MATLAB function
% "patch" in order to construct the destroyer 3-D model
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function [verts,faces]=destroyer();

verts=[140, 0, 5 %l
 90, -16, 3 %2
 90, -16, -10 %3
 125, 0, -10 %4
 50, -20, 0 %5
 50, -20, -10 %6
 44, -20, 0 %7
 44, -20, 5 %8
 38, -20, 5 %9
 29, -20, 5 %10
 8, -20, 5 %11
 8, -20, 0 %12
 -8, -20, 0 %13
 -8, -20, -10 %14
 -8, -20, 5 %15
 -55, -14, 5 %16
 -55, -14, -3 %17
 -55, -13, -10 %18
 -85, -10, -3 %19
 -84, -9, -10 %20
 -85, 10, -3 %21
 -84, 9, -10 %22
 -55, 14, -3 %23
 -55, 13, -10 %24
 -55, 14, 5 %25
 -8, 20, 5 %26
 -8, 20, 0 %27
 -8, 20, -10 %28
 8, 20, 0 %29
 8, 20, 5 %30
 29, 20, 5 %31
 38, 20, 5 %32
 44, 20, 5 %33
 44, 20, 0 %34
 50, 20, 0 %35
 50, 20, -10 %36
 90, 16, 3 %37
 90, 15, -10 %38
 50, -11, 0 %39
 50, 11, 0 %40
 50, -6, 5 %41
 44, -6, 5 %42
 44, -11, 5 %43
 38, -20, 5 %44
 44, -20, 5%45
 50, -11, 5%46

62

 50, 6, 5%47
 44, 6, 5%48
 44, 11, 5%49
 38, 20, 5%50
 44, 20, 5%51
 50, 11, 5%52
 50, -6, 14%53
 44, -6, 14%54
 44, 6, 14%55
 50, 6, 14%56
 38, -19, 20%57
 44, -11, 20%58
 44, 11, 20%59
 38, 19, 20%60
 29, 19, 20%61
 25, 11, 20%62
 25, -11, 20%63
 29, -19, 20%64
 0, -10, 5%65
 20, -10, 5%66
 20, 10, 5%67
 0, 10, 5%68
 24, 11, 5%69
 24, -11, 5%70
 6, -4, 20%71
 14, -4, 20%72
 14, 4, 20%73
 6, 4, 20%74
 0, -10, 0%75
 0, 10, 0%76
 -32, -10, 5%77
 -8, -10, 5%78
 -8, 10, 5%79
 -32, 10, 5%80
 -22, -4, 20%81
 -14, -4, 20%82
 -14, 4, 20%83
 -22, 4, 20%84
 29, -2, 20%85
 33, -2, 20%86
 33, 2, 20%87
 29, 2, 20%88
 25, -2, 50%89
 29, -2, 50%90
 29, 2, 50%91
 25, 2, 50];%92

 %number = 32 12

 plane1 = [1,2,3,4,4,4,4,4,4,4,4];
 plane2 = [2,5,6,3,3,3,3,3,3,3,3];
 plane3 = [5,7,8,9,10,11,12,13,14,6,6];
 plane4 = [13,15,16,17,18,14,14,14,14,14,14];
 plane5 = [17,19,20,18,18,18,18,18,18,18,18];
 plane6 = [19,21,22,20,20,20,20,20,20,20,20];
 plane7 = [21,23,24,22,22,22,22,22,22,22,22];
 plane8 = [23,25,26,27,28,24,24,24,24,24,24];
 plane9 = [27,29,30,31,32,33,34,35,36,28,28];

63

 plane10 = [35,37,38,36,36,36,36,36,36,36,36];
 plane11 = [37,1,4,38,38,38,38,38,38,38,38];
 botton = [4,3,6,14,18,20,22,24,28,36,38];
 deck1 = [1,2,37,37,37,37,37,37,37,37,37];
 deck2 = [2,5,35,37,37,37,37,37,37,37,37];
 deck3 = [5,7,39,39,39,39,39,39,39,39,39];
 deck4 = [34,35,40,40,40,40,40,40,40,40,40];
 deck5 = [46,41,42,43,9,8,8,8,8,8,8];
 deck6 = [47,48,49,32,51,52,52,52,52,52,52];
 deck7 = [53,54,55,56,56,56,56,56,56,56,56];
 deck8 = [57,58,59,60,61,62,63,64,64,64,64];
 deck9 = [10,11,65,66,67,68,30,31,69,70,70];
 deck10 = [13,12,75,76,29,27,27,27,27,27,27];
 deck11 = [16,15,78,77,80,79,26,25,25,25,25];
 deck12 = [19,17,23,21,21,21,21,21,21,21,21];
 lateral1 = [8,46,39,7,7,7,7,7,7,7,7];
 lateral2 = [39,46,41,53,56,47,52,40,40,40,40];
 lateral3 = [40,52,33,34,34,34,34,34,34,34,34];
 lateral4 = [54,53,41,42,42,42,42,42,42,42,42];
 lateral5 = [55,56,47,48,48,48,48,48,48,48,48];
 lateral6 = [58,59,49,48,55,54,42,43,43,43,43];
 lateral7 = [57,58,43,9,9,9,9,9,9,9,9];
 lateral8 = [60,59,49,32,32,32,32,32,32,32,32];
 lateral9 = [64,57,9,10,10,10,10,10,10,10,10];
 lateral10= [61,60,32,31,31,31,31,31,31,31,31];
 lateral11= [63,64,10,70,70,70,70,70,70,70,70];
 lateral12= [62,61,31,69,69,69,69,69,69,69,69];
 lateral13= [62,63,70,69,69,69,69,69,69,69,69];
 lateral14= [65,11,12,75,75,75,75,75,75,75,75];
 lateral15= [68,30,29,76,76,76,76,76,76,76,76];
 lateral16= [65,75,76,68,68,68,68,68,68,68,68];
 lateral17= [15,13,27,26,26,26,26,26,26,26,26];
 lateral18= [16,17,23,25,25,25,25,25,25,25,25];
 stack1 = [71,72,66,65,65,65,65,65,65,65,65];
 stack2 = [74,73,67,68,68,68,68,68,68,68,68];
 stack3 = [65,71,74,68,68,68,68,68,68,68,68];
 stack4 = [66,72,73,67,67,67,67,67,67,67,67];
 stack5 = [71,72,73,74,74,74,74,74,74,74,74];
 stack6 = [77,81,82,78,78,78,78,78,78,78,78];
 stack7 = [80,84,83,79,79,79,79,79,79,79,79];
 stack8 = [77,81,84,80,80,80,80,80,80,80,80];
 stack9 = [78,82,83,79,79,79,79,79,79,79,79];
 stack10 = [81,82,83,84,84,84,84,84,84,84,84];
 mast1 = [85,86,90,89,89,89,89,89,89,89,89];
 mast2 = [86,87,91,90,90,90,90,90,90,90,90];
 mast3 = [87,88,92,91,91,91,91,91,91,91,91];
 mast4 = [88,85,89,92,92,92,92,92,92,92,92];
 mast5 = [89,90,91,92,92,92,92,92,92,92,92];

 %faces

 faces=[plane1
 plane2
 plane3
 plane4
 plane5
 plane6
 plane7
 plane8
 plane9

64

 plane10
 plane11
 botton
 deck1
 deck2
 deck3
 deck4
 deck5
 deck6
 deck7
 deck8
 deck9
 deck10
 deck11
 deck12
 lateral1
 lateral2
 lateral3
 lateral4
 lateral5
 lateral6
 lateral7
 lateral8
 lateral9
 lateral10
 lateral11
 lateral12
 lateral13
 lateral14
 lateral15
 lateral16
 lateral17
 lateral18
 stack1
 stack2
 stack3
 stack4
 stack5
 stack6
 stack7
 stack8
 stack9
 stack10
 mast1
 mast2
 mast3
 mast4
 mast5];
%===
% End of file destroyer.m

65

%===
% Naval Postgraduate School - CA
%
% Type : Function
% Name : frigate.m
% Function : returns the vertices and faces to be used by the MATLAB function
% "patch" in order to construct the frigate 3-D model
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function [verts,faces]=frigate();

verts=[128, 0, 16 %l
 96, -13, 14 %2
 96, -7, 0 %3
 112, 0, 0 %4
 92, -15, 12 %5
 92, -9, 0 %6
 60, -20, 10 %7
 60, -18, 0 %8
 58, -20, 10 %9
 48, -20, 10 %10
 -26, -20, 10 %11
 -60, -20, 10 %12
 -60, -18, 0 %13
 -102,-15, 10 %14
 -98, -13, 0 %15
 -102, 15, 10 %16
 -98, 13, 0 %17
 -60, 20, 10 %18
 -60, 18, 0 %19
 -26, 20, 10 %20
 48, 20, 10 %21
 58, 20, 10 %22
 60, 20, 10 %23
 60,18,0 %24
 92,15,12 %25
 92,9,0 %26
 96,13,14 %27
 96,7,0 %28
 60,-13,10 %29
 60,13,10 %30
 -12,-12,10 %31
 8,-12,10 %32
 8,-16,10 %33
 -12,12,10 %34
 8,12,10 %35
 8,16,10 %36
 58,-20,20 %37
 48,-20,20 %38
 48,-16,20 %39
 8,-16,20 %40
 8,-12,20 %41
 -12,-12,20 %42
 -26,-20,20 %43
 -60,-20,20 %44
 -60,20,20 %45
 -26,20,20 %46

66

 -12,12,20 %47
 8,12,20 %48
 8,16,20 %49
 48,16,20 %50
 48,20,20 %51
 58,20,20 %52
 60,13,20 %53
 60,-13,20 %54
 57,-13,25 %55
 43,-13,25 %56
 43,13,25 %57
 57,13,25 %58
 60,7,25 %59
 60,-7,25 %60
 49,-20,20 %61
 49,-20,12 %62
 51,-20,12 %63
 51,-20,20 %64
 52,-20,20 %65
 52,-20,12 %66
 56,-20,22 %67
 58,-20,22 %68
 49,20,20 %69
 49,20,12 %70
 51,20,12 %71
 51,20,20 %72
 52,20,20 %73
 52,20,12 %74
 56,20,22 %75
 58,20,22 %76
 60,-13,22 %77
 60,-7,22 %78
 60,7,22 %79
 60,13,22 %80
 60,-7,20 %81
 57,-13,20 %82
 60,7,20 %83
 57,13,20 %84
 43,-13,20 %85
 43,13,20 %86
 59,-16,20 %87
 59,-16,10 %88
 59,16,20 %89
 59,16,10 %90
 -39,-5,20 %91
 -37,-4,25 %92
 -37,4,25 %93
 -39,5,20 %94
 -29,-4,25 %95
 -28,-5,20 %96
 -29,4,25 %97
 -28,5,20 %98
 -16,-3,24 %99
 -10,-3,24 %100
 -10,-3,20 %101
 -16,-3,20 %102
 -16,3,24 %103
 -10,3,24 %104
 -10,3,20 %105
 -16,3,20 %106

67

 18,-1,48 %107
 20,-1,48 %108
 20,1,48 %109
 18,1,48 %110
 18,-1,20 %111
 20,-1,20 %112
 20,1,20 %113
 18,1,20 %114
 36,-2,42 %115
 39,-2,42 %116
 39,2,42 %117
 36,2,42 %118
 36,-2,20 %119
 39,-2,20 %120
 39,2,20 %121
 36,2,20 %122
 48,-2,33 %123
 52,-2,33 %124
 52,2,33 %125
 48,2,33 %126
 48,-2,25 %127
 52,-2,25 %128
 52,2,25 %129
 48,2,25]; %130
 %number = 66 planes
 plane1 = [1,2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4];
 plane2 = [2,5,6,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3];
 plane3 = [5,7,8,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6];
 plane4 = [7,9,10,11,12,13,8,8,8,8,8,8,8,8,8,8,8,8];
 plane5 = [12,14,15,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13];
 plane6 = [14,16,17,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15];
 plane7 = [16,18,19,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17];
 plane8 = [18,20,21,22,23,24,19,19,19,19,19,19,19,19,19,19,19,19];
 plane9 = [23,25,26,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24];
 plane10 = [25,27,28,26,26,26,26,26,26,26,26,26,26,26,26,26,26,26];
 plane11 = [27,1,4,28,28,28,28,28,28,28,28,28,28,28,28,28,28,28];
 botton = [4,3,6,8,13,15,17,19,24,26,28,28,28,28,28,28,28,28];
 deck1 = [1,2,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27];
 deck2 = [2,5,25,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27];
 deck3 = [5,7,9,29,30,22,23,25,25,25,25,25,25,25,25,25,25,25];
 deck4 = [9,10,11,31,32,33,88,88,88,88,88,88,88,88,88,88,88,88];
 deck5 = [22,21,20,34,35,36,90,90,90,90,90,90,90,90,90,90,90,90];
 deck6 = [37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54];
 deck7 = [12,14,16,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18];
 deck8 = [55,56,57,58,59,60,60,60,60,60,60,60,60,60,60,60,60,60];
 lateral1 = [9,10,38,61,62,63,64,65,66,67,68,68,68,68,68,68,68,68];
 lateral2 = [22,21,51,69,70,71,72,73,74,75,76,76,76,76,76,76,76,76];
 lateral3 = [77,78,60,59,79,80,30,29,29,29,29,29,29,29,29,29,29,29];
 lateral4 = [68,77,29,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9];
 lateral5 = [76,80,30,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22];
 lateral6 = [55,60,81,82,82,82,82,82,82,82,82,82,82,82,82,82,82,82];
 lateral7 = [58,59,83,84,84,84,84,84,84,84,84,84,84,84,84,84,84,84];
 lateral8 = [56,55,82,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85];
 lateral9 = [57,58,84,86,86,86,86,86,86,86,86,86,86,86,86,86,86,86];
 lateral10= [56,57,86,85,85,85,85,85,85,85,85,85,85,85,85,85,85,85];
 lateral11= [87,88,33,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40];
 lateral12= [89,90,36,49,49,49,49,49,49,49,49,49,49,49,49,49,49,49];
 lateral13= [40,33,32,41,41,41,41,41,41,41,41,41,41,41,41,41,41,41];
 lateral14= [49,36,35,48,48,48,48,48,48,48,48,48,48,48,48,48,48,48];
 lateral15= [31,42,41,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32];

68

 lateral16= [34,47,48,35,35,35,35,35,35,35,35,35,35,35,35,35,35,35];
 lateral17= [43,11,31,42,42,42,42,42,42,42,42,42,42,42,42,42,42,42];
 lateral18= [46,20,34,47,47,47,47,47,47,47,47,47,47,47,47,47,47,47];
 lateral19= [44,43,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12];
 lateral20= [45,46,20,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18];
 lateral21= [44,12,18,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45];
 stack1 = [91,92,93,94,94,94,94,94,94,94,94,94,94,94,94,94,94,94];
 stack2 = [91,92,95,96,96,96,96,96,96,96,96,96,96,96,96,96,96,96];
 stack3 = [96,95,97,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98];
 stack4 = [94,93,97,98,98,98,98,98,98,98,98,98,98,98,98,98,98,98];
 stack5=[92,95,97,93,93,93,93,93,93,93,93,93,93,93,93,93,93,93];
turret1=[99,100,101,102,102,102,102,102,102,102,102,102,102,102,102,102,102,102
];
turret2=[100,104,105,101,101,101,101,101,101,101,101,101,101,101,101,101,101,10
1];
turret3=[103,104,105,106,106,106,106,106,106,106,106,106,106,106,106,106,106,10
6];
turret4=[99,102,106,103,103,103,103,103,103,103,103,103,103,103,103,103,103,103
];
turret5=[99,100,104,103,103,103,103,103,103,103,103,103,103,103,103,103,103,103
];
mast1=[107,108,112,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111]
;
mast2=[108,109,113,112,112,112,112,112,112,112,112,112,112,112,112,112,112,112]
;
mast3=[109,110,114,113,113,113,113,113,113,113,113,113,113,113,113,113,113,113]
;
mast4=[110,107,111,114,114,114,114,114,114,114,114,114,114,114,114,114,114,114]
;
mast5=[107,108,109,110,110,110,110,110,110,110,110,110,110,110,110,110,110,110]
;
surface1=[115,116,120,119,119,119,119,119,119,119,119,119,119,119,119,119,119,1
19];
surface2=[116,117,121,120,120,120,120,120,120,120,120,120,120,120,120,120,120,1
20];
surface3=[117,118,122,121,121,121,121,121,121,121,121,121,121,121,121,121,121,1
21];
surface4=[118,115,119,122,122,122,122,122,122,122,122,122,122,122,122,122,122,1
22];
surface5=[115,116,117,118,118,118,118,118,118,118,118,118,118,118,118,118,118,1
18];
radar1=[123,124,128,127,127,127,127,127,127,127,127,127,127,127,127,127,127,127
];
radar2=[124,125,129,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128
];
radar3=[125,126,130,129,129,129,129,129,129,129,129,129,129,129,129,129,129,129
];
radar4=[126,123,127,130,130,130,130,130,130,130,130,130,130,130,130,130,130,130
];
radar5=[123,124,125,126,126,126,126,126,126,126,126,126,126,126,126,126,126,126
];
 %faces 66 planes
 faces=[plane1
 plane2
 plane3
 plane4
 plane5
 plane6
 plane7
 plane8

69

 plane9
 plane10
 plane11
 botton
 deck1
 deck2
 deck3
 deck4
 deck5
 deck6
 deck7
 deck8
 lateral1
 lateral2
 lateral3
 lateral4
 lateral5
 lateral6
 lateral7
 lateral8
 lateral9
 lateral10
 lateral11
 lateral12
 lateral13
 lateral14
 lateral15
 lateral16
 lateral17
 lateral18
 lateral19
 lateral20
 lateral21
 stack1
 stack2
 stack3
 stack4
 stack5
 turret1
 turret2
 turret3
 turret4
 turret5
 mast1
 mast2
 mast3
 mast4
 mast5
 surface1
 surface2
 surface3
 surface4
 surface5
 radar1
 radar2
 radar3
 radar4
 radar5];
%===
% End of file frigate.m

70

%===
% Naval Postgraduate School - CA
%
% Type : Function
% Name : pointsur.m
% Function : returns the vertices and faces to be used by the MATLAB function
% "patch" in order to construct the research ship (point sur) 3-D
model
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function [verts,faces]=pointsur();

verts=[93, 0, 0 %0
 81, 0, -15 %l
 39, 16, -15 %2
 -43, 16, -15 %3
 -43,-16, -15 %4
 39, -16, -15 %5
 51, -16, 0 %6
 47, -16, -5 %7
 37, -10, -5 %8
 37,-16, 12 %9
 17, -16, 12 %10
 15, -16, -5 %11
 -43,-16, -8 %12
 -43, 16, -8 %13
 15, 16, -5 %14
 17, 16, 12 %15
 37, 16, 12 %16
 37, 10, -5 %17
 47, 16, -5 %18
 51, 16, 0 %19
 21, 3, 12 %20
 17, 3, 12 %21
 17, -3, 12 %22
 21, -3, 12 %23
 21, 3, 19 %24
 17, 3, 19 %25
 17, -3, 19 %26
 21, -3, 19 %27
 6, 16, -8 %28
 -6, 16, -8 %29
 -6, 8, -8 %30
 6, 8, -8 %31
 6, 16, 6 %32
 -6, 16, 6 %33
 -6, 8, 6 %34
 6, 8, 6 %35
 -16, 16, -8 %36
 -16, 16, -5 %37
 -16,-16, -5 %38
 -16,-16, -8 %39
 38, -16, 8 %40
 38, 16, 8 %41
 31, 16, 8 %42
 31, 16, 12 %43

71

 31, -16, 12 %44
 31, -16, 8 %45
 17, -16, -8 %46
 17, 16, -8 %47
 41, -16, 4 %48
 41, 16, 4 %49
 33, 16, 4 %50
 33, -16, 4 %51
 31, -16, -5 %52
 31, 16, -5 %53
 31, 16, 4 %54
 27, 16, 4 %55
 25, 16, -5 %56
 29, 16, -5 %57
 25, 16, 4 %58
 21, 16, 4 %59
 19, 16, -5 %60
 23, 16, -5 %61
 31, -16, 4 %62
 27, -16, 4 %63
 25, -16, -5 %64
 29, -16, -5 %65
 25, -16, 4 %66
 21, -16, 4 %67
 19, -16, -5 %68
 23, -16, -5 %69
 37, 10, 4 %70
 37, -10, 4 %71
 17, -10, 4 %72
 17, -10, -5 %73
 17, 10, -5 %74
 17, 10, 4]; %75

 %number = 32

 plane0 = [0,1,2,18,19,19,19,19,19,19,19,19,19,19,19,19];
 plane1 = [2,3,13,47,14,18,18,18,18,18,18,18,18,18,18,18];
 plane2 = [4,5,7,11,46,12,12,12,12,12,12,12,12,12,12,12];
 plane3 = [0,6,7,5,1,1,1,1,1,1,1,1,1,1,1,1];
 late0 = [47,14,37,36,36,36,36,36,36,36,36,36,36,36,36,36];
 late1 = [8,71,72,73,73,73,73,73,73,73,73,73,73,73,73,73];
 late2 = [17,70,75,74,74,74,74,74,74,74,74,74,74,74,74,74];
 late3 = [52,51,48,40,45,44,10,11,68,67,66,69,64,63,62,65];
 late4 = [53,50,49,41,42,43,15,14,60,59,58,61,56,55,54,53];
 bottom = [1,2,3,4,5,5,5,5,5,5,5,5,5,5,5,5];
 glass0 = [48,40,41,49,49,49,49,49,49,49,49,49,49,49,49,49];
 glass1 = [45,44,43,42,42,42,42,42,42,42,42,42,42,42,42,42];
 glass2 = [8,17,70,71,71,71,71,71,71,71,71,71,71,71,71,71];
 radar0 = [20,24,27,23,23,23,23,23,23,23,23,23,23,23,23,23];
 radar1 = [20,21,25,24,24,24,24,24,24,24,24,24,24,24,24,24];
 radar2 = [22,23,27,26,26,26,26,26,26,26,26,26,26,26,26,26];
 stack0 = [28,32,35,31,31,31,31,31,31,31,31,31,31,31,31,31];
 stack1 = [32,33,29,28,28,28,28,28,28,28,28,28,28,28,28,28];
 stack2 = [30,31,35,34,34,34,34,34,34,34,34,34,34,34,34,34];
 stack3 = [30,34,33,29,29,29,29,29,29,29,29,29,29,29,29,29];
 deck0 = [0,19,6,6,6,6,6,6,6,6,6,6,6,6,6,6];
 deck1 = [6,7,18,19,19,19,19,19,19,19,19,19,19,19,19,19];
 deck2 = [7,8,17,18,18,18,18,18,18,18,18,18,18,18,18,18];
 deck3 = [15,16,9,10,22,23,20,21,21,21,21,21,21,21,21,21];
 deck4 = [24,25,26,27,27,27,27,27,27,27,27,27,27,27,27,27];

72

 deck5 = [14,15,21,25,26,22,10,11,11,11,11,11,11,11,11,11];
 deck6 = [11,38,37,29,30,31,28,14,14,14,14,14,14,14,14,14];
 deck7 = [36,37,38,39,39,39,39,39,39,39,39,39,39,39,39,39];
 deck8 = [36,13,12,39,39,39,39,39,39,39,39,39,39,39,39,39];
 deck9 = [3,4,12,13,13,13,13,13,13,13,13,13,13,13,13,13];
 deck10 = [32,33,34,35,35,35,35,35,35,35,35,35,35,35,35,35];
 deck11 = [40,45,42,41,41,41,41,41,41,41,41,41,41,41,41,41];

 %faces

 faces=[plane0
 plane1
 plane2
 plane3
 late0
 late1
 late2
 late3
 late4
 bottom
 glass0
 glass1
 glass2
 radar0
 radar1
 radar2
 stack0
 stack1
 stack2
 stack3
 deck0
 deck1
 deck2
 deck3
 deck4
 deck5
 deck6
 deck7
 deck8
 deck9
 deck10
 deck11];

faces=faces+1;
%===
% End of file pointsur.m

73

%===
% Naval Postgraduate School - CA
%
% Type : Function
% Name : merchant.m
% Function : returns the vertices and faces to be used by the MATLAB function
% "patch" in order to construct the merchant 3-D model
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function [verts,faces]=merchant();

verts=[115,-11,0 %1
 115,-15,10 %2
 118.9,-14.5,10.8 %3
 117.8,-10.6,0 %4
 122.5,-13,11.5 %5
 120.5,-9.5,0 %6
 125.6,-10.6,12 %7
 122.8,-7.8,0 %8
 128,-7.5,12.5 %9
 124.5,-5.5,0 %10
 129.5,-3.9,13 %11
 125.6,-2.85,0 %12
 130,0,13 %13
 126,0,0 %14
 129.5,3.9,13 %15
 125.6,2.85,0 %16
 128,7.5,12.5 %17
 124.5,5.5,0 %18
 125.6,10.6,12 %19
 122.8,7.8,0 %20
 122.5,13,11.5 %21
 120.5,9.5,0 %22
 118.9,14.5,10.8 %23
 117.8,10.6,0 %24
 115,15,10 %25
 115,11,0 %26
 96,-15,10 %27
 93,-15,7 %28
 -130,-15,7 %29
 -128,-11,0 %30
 -128,11,0 %31
 -130,15,7 %32
 93,15,7 %33
 96,15,10 %34
 -80,-15,23 %35
 -80,15,23 %36
 -84,15,23 %37
 -84,11,23 %38
 -91,11,23 %39
 -91,-11,23 %40
 -84,-11,23 %41
 -84,-15,23 %42
 -91,-11,17 %43
 -91,11,17 %44
 -110,11,17 %45
 -110,-11,17 %46

74

 -110,11,7 %47
 -110,-11,7 %48
 -80,-15,21 %49
 -80,-11,19 %50
 -80,-11,7 %51
 -80,11,7 %52
 -80,11,19 %53
 -80,15,21 %54
 -84,-15,21 %55
 -84,-11,19 %56
 -91,-11,7 %57
 -84,15,21 %58
 -84,11,19 %59
 -91,11,7 %60
 -99,-3,17 %61
 -99,3,17 %62
 -104,3,17 %63
 -104,-3,17 %64
 -99,3,27 %65
 -99,-3,27 %66
 -104,3,27 %67
 -104,-3,27 %68
 2,-11,7 %69
 2,-9,7 %70
 0,-9,7 %71
 0,-11,7 %72
 2,-11,20 %73
 2,-9,20 %74
 0,-11,20 %75
 0,-9,20 %76
 2,9,7 %77
 2,11,7 %78
 0,11,7 %79
 0,9,7 %80
 2,9,20 %81
 2,11,20 %82
 0,11,20 %83
 0,9,20 %84
 111,-1,10 %85
 111,1,10 %86
 109,1,10 %87
 109,-1,10 %88
 111,-1,26 %89
 111,1,26 %90
 109,1,26 %91
 109,-1,26 %92
 -89,-1,23 %93
 -89,1,23 %94
 -91,1,23 %95
 -91,-1,23 %96
 -89,-1,30 %97
 -89,1,30 %98
 -91,1,30 %99
 -91,-1,30]; %100

 %planes

 proa1 = [1,2,3,4,4,4,4,4,4,4,4,4,4,4,4];
 proa2 = [3,5,6,4,4,4,4,4,4,4,4,4,4,4,4];
 proa3 = [5,7,8,6,6,6,6,6,6,6,6,6,6,6,6];

75

 proa4 = [7,9,10,8,8,8,8,8,8,8,8,8,8,8,8];
 proa5 = [9,11,12,10,10,10,10,10,10,10,10,10,10,10,10];
 proa6 = [11,13,14,12,12,12,12,12,12,12,12,12,12,12,12];
 proa7 = [13,15,16,14,14,14,14,14,14,14,14,14,14,14,14];
 proa8 = [15,17,18,16,16,16,16,16,16,16,16,16,16,16,16];
 proa9 = [17,19,20,18,18,18,18,18,18,18,18,18,18,18,18];
 proa10= [19,21,22,20,20,20,20,20,20,20,20,20,20,20,20];
 proa11= [21,23,24,22,22,22,22,22,22,22,22,22,22,22,22];
 proa12= [23,25,26,24,24,24,24,24,24,24,24,24,24,24,24];
 plane1 = [1,2,27,28,29,30,30,30,30,30,30,30,30,30,30];
 plane2 = [29,30,31,32,32,32,32,32,32,32,32,32,32,32,32];
 plane3 = [26,25,34,33,32,31,31,31,31,31,31,31,31,31,31];
 deck1 = [2,3,5,7,9,11,13,15,17,19,21,23,25,25,25];
 deck2 = [2,25,34,27,27,27,27,27,27,27,27,27,27,27,27];
 deck3 = [27,34,33,28,28,28,28,28,28,28,28,28,28,28,28];
 deck4 = [28,33,32,29,29,29,29,29,29,29,29,29,29,29,29];
 deck5 = [35,36,37,38,39,40,41,42,42,42,42,42,42,42,42];
 deck6 = [40,39,44,43,43,43,43,43,43,43,43,43,43,43,43];
 deck7 = [43,44,45,46,46,46,46,46,46,46,46,46,46,46,46];
 deck8 = [46,45,47,48,48,48,48,48,48,48,48,48,48,48,48];
 botton = [1,4,6,8,10,12,14,16,18,20,22,24,26,31,30];
 front = [35,49,50,51,52,53,54,36,36,36,36,36,36,36,36];
 lateral1 = [51,50,56,41,40,43,57,57,57,57,57,57,57,57,57];
 lateral2 = [52,53,59,38,39,44,60,60,60,60,60,60,60,60,60];
 lateral3 = [43,46,48,57,57,57,57,57,57,57,57,57,57,57,57];
 lateral4 = [44,45,47,60,60,60,60,60,60,60,60,60,60,60,60];
 blocoright1 = [35,49,55,42,42,42,42,42,42,42,42,42,42,42,42];
 blocoright2 = [41,42,55,56,56,56,56,56,56,56,56,56,56,56,56];
 blocoleft1 = [36,37,58,54,54,54,54,54,54,54,54,54,54,54,54];
 blocoleft2 = [37,38,59,58,54,54,54,54,54,54,54,54,54,54,54];
 stack1 = [64,61,66,68,68,68,68,68,68,68,68,68,68,68,68];
 stack2 = [61,62,65,66,66,66,66,66,66,66,66,66,66,66,66];
 stack3 = [62,65,67,63,63,63,63,63,63,63,63,63,63,63,63];
 stack4 = [67,68,64,63,63,63,63,63,63,63,63,63,63,63,63];
 stacktop = [66,65,67,68,68,68,68,68,68,68,68,68,68,68,68];
 middleright1 = [72,69,73,75,75,75,75,75,75,75,75,75,75,75,75];
 middleright2 = [69,70,74,73,73,73,73,73,73,73,73,73,73,73,73];
 middleright3 = [70,74,76,71,71,71,71,71,71,71,71,71,71,71,71];
 middleright4 = [71,76,75,72,72,72,72,72,72,72,72,72,72,72,72];
 middlerighttop = [73,74,75,76,76,76,76,76,76,76,76,76,76,76,76];
 middleleft1 = [80,77,81,84,84,84,84,84,84,84,84,84,84,84,84];
 middleleft2 = [77,78,82,81,81,81,81,81,81,81,81,81,81,81,81];
 middleleft3 = [78,79,83,82,82,82,82,82,82,82,82,82,82,82,82];
 middleleft4 = [79,80,84,83,83,83,83,83,83,83,83,83,83,83,83];
 middlelefttop = [81,82,83,84,84,84,84,84,84,84,84,84,84,84,84];
 mastproa1 = [88,85,89,92,92,92,92,92,92,92,92,92,92,92,92];
 mastproa2 = [85,86,90,89,89,89,89,89,89,89,89,89,89,89,89];
 mastproa3 = [86,87,91,90,90,90,90,90,90,90,90,90,90,90,90];
 mastproa4 = [87,88,92,91,91,91,91,91,91,91,91,91,91,91,91];
 mastproatop = [89,90,91,92,92,92,92,92,92,92,92,92,92,92,92];
 mastpopa1 = [96,93,97,100,100,100,100,100,100,100,100,100,100,100,100];
 mastpopa2 = [93,94,98,97,97,97,97,97,97,97,97,97,97,97,97];
 mastpopa3 = [94,98,99,95,95,95,95,95,95,95,95,95,95,95,95];
 mastpopa4 = [95,99,100,96,96,96,96,96,96,96,96,96,96,96,96];
 mastpopatop = [97,98,99,100,100,100,100,100,100,100,100,100,100,100,100];

 %faces

 faces=[proa1
 proa2

76

 proa3
 proa4
 proa5
 proa6
 proa7
 proa8
 proa9
 proa10
 proa11
 proa12
 plane1
 plane2
 plane3
 deck1
 deck2
 deck3
 deck4
 deck5
 deck6
 deck7
 deck8
 botton
 front
 lateral1
 lateral2
 lateral3
 lateral4
 blocoright1
 blocoright2
 blocoleft1
 blocoleft2
 stack1
 stack2
 stack3
 stack4
 stacktop
 middleright1
 middleright2
 middleright3
 middleright4
 middlerighttop
 middleleft1
 middleleft2
 middleleft3
 middleleft4
 middlelefttop
 mastproa1
 mastproa2
 mastproa3
 mastproa4
 mastproatop
 mastpopa1
 mastpopa2
 mastpopa3
 mastpopa4
 mastpopatop];
%===
% End of file merchant.m

77

%===
% Naval Postgraduate School - CA
%
% Type : Function
% Name : findInputMomSet.m
% Function : Finds the moment invariants input set for each view angle
% This set will be used as the input for the neural network classifier
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function [trainingSet] = findInputMomSet(noise_silhouettes,rows,columns);

totalLines=12; %number of moment functions
[X,totalColumns]=size(noise_silhouettes);
trainingSet= zeros(totalLines,totalColumns);
X1=zeros(rows,columns);

for i=1:totalColumns

 temp=noise_silhouettes(:,i);
 X1(:)=temp;
 trainingSet(1:6,i)=find_mom_functions(X1); % solid silhouette
 X2=X1*255; %[0 0 ...] max=255
 XX1=edge(X2,'prewitt'); %only the edges [0 0
0 ...] max=1
 trainingSet(7:12,i)=find_mom_functions(XX1); %boundary
end
%===
% End of file findInputMomSet.m

78

%===
% Naval Postgraduate School - CA
%
% Type : Function
% Name : find_mom_functions.m
% Function : returns six functions values relating to the central moment
functions
% invariant under rotation, translation,reflection and scale
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function NewMoments = find_mom_functions(pattern);

%FIND_MOM_FUNCTIONS returns six functions values relating to the central moment
functions
%invariant under rotation, translation,reflection and scale
% [NewM2,NewM3,NewM4,NewM5,NewM6,NewM7] = find_mom_functions(pattern)

%find the second and third-order central moments
m_1_1=find_moment(1,1,pattern);
m_1_2=find_moment(1,2,pattern);
m_2_1=find_moment(2,1,pattern);
m_2_0=find_moment(2,0,pattern);
m_0_2=find_moment(0,2,pattern);
m_0_3=find_moment(0,3,pattern);
m_3_0=find_moment(3,0,pattern);

%find the moment functions invariant under rotation and reflection
M2=(m_2_0 - m_0_2)^2 + 4*(m_1_1^2);
M3=(m_3_0 - 3*m_1_2)^2 + (3*m_2_1 - m_0_3)^2;
M4=(m_3_0 + m_1_2)^2 + (m_2_1 +m_0_3)^2;
M5=(m_3_0 - 3*m_1_2)*(m_3_0 + m_1_2)*((m_3_0 + m_1_2)^2 - 3*(m_2_1 +
m_0_3)^2)+(3*m_2_1 - m_0_3)*(m_2_1 + m_0_3)*(3*((m_3_0 + m_1_2)^2) - (m_2_1 +
m_0_3)^2);
M6=(m_2_0 - m_0_2)*((m_3_0 + m_1_2)^2 - (m_2_1 + m_0_3)^2) + 4*m_1_1*(m_3_0 +
m_1_2)*(m_2_1 + m_0_3);
M7=(3*m_2_1 - m_0_3)*(m_3_0 + m_1_2)*((m_3_0 + m_1_2)^2 - 3*(m_2_1 + m_0_3)^2)
- (m_3_0 - 3*m_1_2)*(m_2_1 + m_0_3)*(3*(m_3_0 + m_1_2)^2 - (m_2_1 + m_0_3)^2);

%normalizing the moment functions under scale using the radius of gyration
r=sqrt(m_2_0 + m_0_2);

%the new moment function M2 through M7
NewM2 = M2/(r^4);
NewM3 = M3/(r^6);
NewM4 = M4/(r^7);
NewM5 = M5/(r^12);
NewM6 = M6/(r^8);
NewM7 = M7/(r^12);

NewMoments=[NewM2
 NewM3
 NewM4
 NewM5
 NewM6
 NewM7];
%===
% End of file find_mom_functions.m

79

%===
% Naval Postgraduate School - CA
%
% Type : Function
% Name : find_moment.m
% Function : returns the central moment related to the indexes p and q
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function [m_p_q] = find_moment(p,q,pattern);

%FIND_MOMENT returns the central moment related to the indexes p and q.
% [M_P_Q] = FIND_MOMENT(P,Q,PATTERN)

[NRows,NColumns]=size(pattern);
count=sum(sum(pattern,1),2);

%find the centroid values for this pattern

[um,vm]= find_centroid(pattern);

%index rows==>vi index columns==>ui
% m_p_q=m_p_q+((ui-um)^p)*((vi-vm)^q)

[ui,vi]=meshgrid(0:(NColumns-1),0:(NRows-1));%ui=[0 1 2 ... vi=[0 0 0 ...
 % 0 1 2 ... 1 1 1 ...
 % 0 1 2 ... 2 2 2 ...

m_p_q=((ui-um).^p).*((vi-vm).^q);
pattern=double(pattern);
m_p_q=m_p_q.*pattern;
m_p_q=sum(sum(m_p_q,1),2);
m_p_q=m_p_q/count;
%===
% End of file finf_moment.m

80

%===
% Naval Postgraduate School - CA
%
% Type : Function
% Name : find_centroid.m
% Function : returns the centroid values for an image silhouette
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function [um,vm] = find_centroid(pattern);

%FIND_CENTROID returns the centroid values for an image frame PATTERN.
% [VM,UM] = FIND_CENTROID(PATTERN)

%considering the solid silhouette or its boundary as a binary matrix(ones and
zeros)
pattern=double(pattern);
[NRows,NColumns]=size(pattern);

%the mean values um and vm are the centroid of the given pattern

%index rows==>vi index columns==>ui
% m_p_q=m_p_q+((ui-um)^p)*((vi-vm)^q)

[ui,vi]=meshgrid(0:(NColumns-1),0:(NRows-1));%ui=[0 1 2 ... vi=[0 0 0 ...
 % 0 1 2 ... 1 1 1 ...
 % 0 1 2 ... 2 2 2 ...

ui=ui.*pattern;
um=sum(sum(ui,1),2);
vi=vi.*pattern;
vm=sum(sum(vi,1),2);
count=sum(sum(pattern,1),2);
vm=vm/count;
um=um/count;
%===
% End of file find_centroid.m

81

%===
% Naval Postgraduate School - CA
% Type : Main program
% Name : mainShipRecon
% Function : Create and trains a neural network responsible for recognizing
ship types
% based on the moment invariants calculated for each viewangle
silhouette
%
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

azAngleInc=15; % ==>12 azimuth angles
eleAngleInc=15;%0,15,30,45 ==>four elev angles % 90;%one elevation angle ==>
zero degree
totalAzimuth=180/azAngleInc;% ==>12
totalElevation=4;%=90/eleAngleInc;
totalColumns=totalAzimuth*totalElevation;%each column means one view
totalLines=12; %number of moment functions

inputSet= zeros(totalLines,totalColumns);
rows=210;
columns=280;
silhouettes=zeros(rows*columns,totalColumns);

% ==========================
% DEFINING THE MODEL PROBLEM
% ==========================

% The script file FINDINPUTMOMSET defines a matrix inputSet
% which contains the moment functions(12 values) for all views defined by
the
% "Azimuth Angle Increment" and "Elevation Angle Increment" of the ship
model.

% Each target vector has 5 elements with
% all zeros, except for a single 1. Aircraft Carrier has a 1 in the
% first element, Destroyer in the second, Frigate in the third
% , Point Sur in the fourth and Merchant in the fifth.

%aircraft carrier
[verts,faces]=aircarrier;
[inputSet,silhouettes]= findInputSet(verts,faces,azAngleInc,eleAngleInc);
[x,y]=size(inputSet);

temp=zeros(5,y);
temp(1,:)=1;%first line means aircraft carrier

targets=temp;
alphabet=inputSet;
all_silhouettes=silhouettes;

1
%destroyer
[verts,faces]=destroyer;
[inputSet,silhouettes]= findInputSet(verts,faces,azAngleInc,eleAngleInc);
[x,y]=size(inputSet);

82

temp=zeros(5,y);
temp(2,:)=1;%second line means destroyer

targets=[targets,temp];
alphabet=[alphabet,inputSet];
all_silhouettes=[all_silhouettes,silhouettes];

2
%frigate
[verts,faces]=frigate;
[inputSet,silhouettes]= findInputSet(verts,faces,azAngleInc,eleAngleInc);
[x,y]=size(inputSet);
temp=zeros(5,y);
temp(3,:)=1;%third line means frigate

targets=[targets,temp];
alphabet=[alphabet,inputSet];
all_silhouettes=[all_silhouettes,silhouettes];

3
%point sur
[verts,faces]=pointsur;
[inputSet,silhouettes]= findInputSet(verts,faces,azAngleInc,eleAngleInc);
[x,y]=size(inputSet);
temp=zeros(5,y);
temp(4,:)=1;%fourth line means point sur

targets=[targets,temp];
alphabet=[alphabet,inputSet];
all_silhouettes=[all_silhouettes,silhouettes];

4
%merchant
[verts,faces]=merchant;
[inputSet,silhouettes]= findInputSet(verts,faces,azAngleInc,eleAngleInc);
[x,y]=size(inputSet);
temp=zeros(5,y);
temp(5,:)=1;%fifth line means point sur

targets=[targets,temp];
alphabet=[alphabet,inputSet];
all_silhouettes=[all_silhouettes,silhouettes];

save all_silhouettes all_silhouettes;
clear all_silhouettes;
save alphabet alphabet;
save targets targets;

clf;
figure(gcf)
echo on

[R,Q] = size(alphabet);
[S2,Q] = size(targets);

%pause % Strike any key to define the network...

% ====================
% DEFINING THE NETWORK
% ====================

83

% The ship recognition network will have 20 TANSIG
% neurons in its hidden layer.

S1 = 20;
net = newff(minmax(alphabet),[S1 S2],{'logsig' 'logsig'},'traingdx');
net.LW{2,1} = net.LW{2,1}*0.01;
net.b{2} = net.b{2}*0.01;

%pause % Strike any key to train the network...

% ====================
% TRAINING THE NETWORK
% ====================

net.performFcn = 'sse'; % Sum-Squared Error performance function
net.trainParam.goal = 0.1; % Sum-squared error goal.
net.trainParam.show = 10000;%20; % Frequency of progress displays (in
epochs).
net.trainParam.epochs = 600000; % Maximum number of epochs to train.
net.trainParam.mc = 0.95; % Momentum constant.

% Training begins...please wait...

P = alphabet;
T = targets;

[net,tr] = train(net,P,T);
save net net
5
% ...and finally finishes.
%===
% End of file mainShipRecon.m

84

%===
% Naval Postgraduate School - CA
% Type : Procedure
% Name : findInputSet
% Function : Creates the 3-D model, change the viewpoint of the 3-D model,
% extract the silhouette for each training angle
% Type : Function
% Date 20/may/2000
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function [trainingSet,silhouettes] = findInputSet(
verts,faces,azAngleInc,eleAngleInc);

totalAzimuth=180/azAngleInc;
totalElevation=4;%90/eleAngleInc;
totalColumns=totalAzimuth*totalElevation;%each column means one view
totalLines=12; %number of moment functions
trainingSet= zeros(totalLines,totalColumns);
rows=210;
columns=280;
silhouettes=zeros(rows*columns,totalColumns);
figNumber=figure(...
 'Name','Silhouette', ...
 'Position',[120 120 280 210]);% matriz => 210rows X 280columns

figure(figNumber)

%Creates the 3-D model
patch('Vertices',verts,'Faces',faces);
view(3)
axis equal;
axis off
axis vis3d
lineCount=0;

for i=-90:azAngleInc:89 %azimuth popa until proa
 i
 %for j=0:eleAngleInc:89 %elevation
 for j=0:eleAngleInc:46 %elevation
 j
 lineCount=lineCount+1;

 %Changes the model viewpoint to the desired training angle
 view(i,j);
 [X,map]=capture; %[65, 65, ...]
 X1=X-65; %[0 0 ...] max=1
 silhouettes(:,lineCount)=X1(:);
 trainingSet(1:6,lineCount)=find_mom_functions(X1); % solid silhouette
 X2=X1*255; %[0 0 ...] max=255
 XX1=edge(X2,'prewitt'); %only the edges [0 0
0 ...] max=1
 trainingSet(7:12,lineCount)=find_mom_functions(XX1); %boundary
 end
end
%===
% End of file findInputSet.m

85

%===
% Naval Postgraduate School - CA
% Type : Function
% Name : interface.m
% Function : Create a Graphical User Interface in order to evaluate the
% Automatic Target Recognition System implemented
% 3 ship silhouettes are shown in the interface:
% - the original silhoette
% - the rotated, scaled and noisy silhouette defined by the
user
% - the neural network "guessed" silhouette
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function interface(action)

if nargin<1,
 action='initialize';
end;

if strcmp(action,'initialize'),
 oldFigNumber=watchon;

 figNumber=figure(...
 'Name','Neural Network Ship Silhouette Recognition', ...
 'NumberTitle','off', ...
 'Visible','off', ...
 'BackingStore','off');

 axPos=[0.40 0.95-0.28 0.20 0.28];
 axHndl1=axes(...
 'Units','normalized', ...
 'Position',axPos, ...
 'XTick',[],'YTick',[], ...
 'Box','on');
 labelPos=[0.05 0.80 0.30 0.05];
 uicontrol(...
 'Style','text', ...
 'String','Original Ship Silhouette', ...
 'BackgroundColor','k', ...
 'ForegroundColor','w', ...
 'Units','normalized', ...
 'Position',labelPos);

 axHndl2=axes(...
 'Units','normalized', ...
 'Position',axPos+[0 -0.31 0 0], ...
 'XTick',[],'YTick',[], ...
 'Box','on');
 labelPos=[0.05 0.50 0.30 0.05];
 uicontrol(...
 'Style','text', ...
 'String','Ship Silhouette with Noise', ...
 'BackgroundColor','k', ...
 'ForegroundColor','w', ...
 'Units','normalized', ...
 'Position',labelPos);

86

 axHndl3=axes(...
 'Units','normalized', ...
 'Position',axPos+[0 -0.62 0 0], ...
 'XTick',[],'YTick',[], ...
 'Box','on');
 labelPos=[0.05 0.20 0.30 0.05];
 uicontrol(...
 'Style','text', ...
 'String','Network''s Guess', ...
 'BackgroundColor','k', ...
 'ForegroundColor','w', ...
 'Units','normalized', ...
 'Position',labelPos);

 %===================================
 % Information for all buttons
 top=0.95;
 bottom=0.05;
 labelColor=[0.8 0.8 0.8];
 btnWid=0.20;
 btnHt=0.10;
 right=0.95;
 left=right-btnWid;
 % Spacing between the button and the next command's label
 spacing=0.05;

 %====================================
 % The CONSOLE frame
 frmBorder=0.02;
 frmPos=[left-frmBorder bottom-frmBorder btnWid+2*frmBorder
0.9+2*frmBorder];
 h=uicontrol(...
 'Style','frame', ...
 'Units','normalized', ...
 'Position',frmPos, ...
 'BackgroundColor',[0.5 0.5 0.5]);

 %====================================
 % The NEW SILHOUETTE button
 btnNumber=1;
 yPos=top-btnHt-(btnNumber-1)*(btnHt+spacing);
 labelStr='New Silhouette';
 callbackStr='interface(''new'');';

 % Generic button information
 btnPos=[left yPos btnWid btnHt];
 flyHndl=uicontrol(...
 'Style','pushbutton', ...
 'Units','normalized', ...
 'Position',btnPos, ...
 'String',labelStr, ...
 'Callback',callbackStr);

 %====================================
 % The NOISE slider
 btnNumber=2;
 yPos=top-btnHt-(btnNumber-1)*(btnHt+spacing);
 labelStr='Noise';

 % Generic button information

87

 sldPos=[left yPos btnWid btnHt/2];
 labelPos=[left yPos+btnHt/2 btnWid btnHt/2];
 sldHndl=uicontrol(...
 'Style','slider', ...
 'Units','normalized', ...
 'Position',sldPos);

 uicontrol(...
 'Style','text', ...
 'Units','normalized', ...
 'String','Noise', ...
 'Position',labelPos);

 %====================================
 % The ROTATION slider
 btnNumber=3;
 yPos=top-btnHt-(btnNumber-1)*(btnHt+spacing);
 labelStr='Rotation';

 % Generic button information
 rotPos=[left yPos btnWid btnHt/2];
 labelPos=[left yPos+btnHt/2 btnWid btnHt/2];
 rotHndl=uicontrol(...
 'Style','slider', ...
 'Units','normalized', ...
 'Position',rotPos);

 uicontrol(...
 'Style','text', ...
 'Units','normalized', ...
 'String','Rotation', ...
 'Position',labelPos);

 %====================================
 % The SCALE slider
 btnNumber=4;
 yPos=top-btnHt-(btnNumber-1)*(btnHt+spacing);
 labelStr='Scale';

 % Generic button information
 sclPos=[left yPos btnWid btnHt/2];
 labelPos=[left yPos+btnHt/2 btnWid btnHt/2];
 sclHndl=uicontrol(...
 'Style','slider', ...
 'Units','normalized', ...
 'Position',sclPos);

 uicontrol(...
 'Style','text', ...
 'Units','normalized', ...
 'String','Scale', ...
 'Position',labelPos);

 %====================================
 % The INFO button
 labelStr='Info';
 callbackStr='interface(''info'')';
 infoHndl=uicontrol(...
 'Style','push', ...

88

 'Units','normalized', ...
 'Position',[left bottom+btnHt+spacing btnWid btnHt], ...
 'String',labelStr, ...
 'Callback',callbackStr);

 %====================================
 % The CLOSE button
 labelStr='Close';
 callbackStr='close(gcf)';
 closeHndl=uicontrol(...
 'Style','push', ...
 'Units','normalized', ...
 'Position',[left bottom btnWid btnHt], ...
 'String',labelStr, ...
 'Callback',callbackStr);

 % Uncover the figure
 hndlList=[axHndl1 axHndl2 axHndl3 sldHndl rotHndl sclHndl];
 set(figNumber, ...
 'Visible','on', ...
 'UserData',hndlList);

 watchoff(oldFigNumber);
 choice=0;
 interface new;
 figure(figNumber);

elseif strcmp(action,'new'),
 figNumber=watchon;
 hndlList=get(figNumber,'Userdata');
 axHndl1=hndlList(1);
 axHndl2=hndlList(2);
 axHndl3=hndlList(3);
 sldHndl=hndlList(4);
 rotHndl=hndlList(5);
 sclHndl=hndlList(6);

 load all_silhouettes;
 load rows;
 load columns;
 load net;

 [X,Y]=size(all_silhouettes);
 load choice;
 choice=choice+1;
 save choice choice;
 choice
 %find a random silhouette as the original one
 randsilhouette=all_silhouettes(:,choice);

 %find the corresponding silhouette after rotation
 rotsilhouette=randsilhouette;
 rotationlevel=get(rotHndl,'Value');
 rotationlevel*180
 X1=zeros(rows,columns);
 X1(:)=randsilhouette;
 X2=imrotate(X1,(rotationlevel*180),'bilinear','crop');
 rotsilhouette=X2(:);

89

 %find the corresponding silhouette after scaling
 sclsilhouette=rotsilhouette;
 scalelevel=get(sclHndl,'Value')
 X1=zeros(rows,columns);
 X1(:)=rotsilhouette;
 X2=imrotate(X1,45,'bilinear','crop');
 sclsilhouette=X2(:);

 %find the corresponding silhouette after adding noise
 noiselevel=get(sldHndl,'Value')
 noise=round(randn(rows*columns,1)*noiselevel);
 y=noise>0;
 w=noise<0;
 noise=y+w;
 noisesilhouette=rotsilhouette+noise;

 testsilhouette=noisesilhouette;
 testMoments= findInputMomSet(testsilhouette,rows,columns);
 A = sim(net,testMoments);
 output=compet(A);
 result=find(output==1)-1;
 result
 outsilhouette=all_silhouettes(:,48*result+25);

 axes(axHndl1);
 plotSilhouette(randsilhouette,rows,columns);
 axes(axHndl2);
 plotSilhouette(testsilhouette,rows,columns);
 axes(axHndl3);
 plotSilhouette(outsilhouette,rows,columns);
 watchoff(figNumber);

elseif strcmp(action,'info'),
 ttlStr=get(gcf,'Name');
 hlpStr= {' '
 ' This window demonstrates the use of a neural '
 ' network to recognize the ship silhouettes. '
 ' of the alphabet. The system used here is based '
 ' on a two layer network (not including the input '
 ' layer) with 20 neurons in the hidden layer and '
 ' 5 neurons (one for each ship type) in the output '
 ' layer. The moment invariants values are the input '
 ' of the neural network. They are 12 element vectors'
 ' representing the invariants for the silhouette. '
 ' '
 ' The network has already been trained using '
 ' backpropagation - you can test it by pressing '
 ' the "New Letter" button. This passes a random '
 ' letter to the network. The "Noise" slider adds '
 ' random noise to make the classification problem '
 ' more difficult. The "Rotation" and the "Scale" '
 ' buttons allow you to rotate and to change the '
 ' scale of the silhouette to be tested. '
 ' '
 ' File name: interface.m '};
 helpwin(hlpStr,ttlStr);

end;
%===
% End of file interface.m

90

%===
% Naval Postgraduate School - CA
% Type : Function
% Name : plotSilhouette.m
% Function : Draws Ship Silhouette inside the Graphical User Interface
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function plotSilhouette(silhouette,rows,columns)

X1=zeros(rows,columns);
X1(:)=silhouette;
imagesc(X1);%body silhouette
colormap(gray(2))
set(gca,'XTick',[],'YTick',[]);
%===
% End of file plotSilhouette.m

91

%===
% Naval Postgraduate School - CA
% Type : Function
% Name : segmentation.m
% Function : Segments a FLIR real image using a histogram and threshold
technique
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

%Aircraft Carrier
[X,Map]=imread('carrier10.tif','tif');% 240 lines by 320 columns
%[X,Map]=imread('carrier11.tif','tif');% 240 lines by 320 columns
%[X,Map]=imread('carrier3.tif','tif');% 240 lines by 320 columns
%[X,Map]=imread('carrier6.tif','tif');% 240 lines by 320 columns

%Destroyer
%[X,Map]=imread('ab6.tif','tif');% 240 lines by 320 columns
%[X,Map]=imread('dd1.tif','tif');% 240 lines by 320 columns

%Merchant
%[X,Map]=imread('group3tanker.tif','tif');% 240 lines by 320 columns
%[X,Map]=imread('group3tanker2.tif','tif');% 240 lines by 320 columns
%[X,Map]=imread('flir2_2.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir2_3.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir2_4.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir2_5.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir2_6.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir7_1.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir7_11.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir7_12.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir8_1.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir8_12.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir8_15.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir8_2.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('flir7_5.jpg','jpg');% 240 lines by 320 columns

%Research Ship
%[X,Map]=imread('iranpb1.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('iranpb2.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('iranpb3.jpg','jpg');% 240 lines by 320 columns
%[X,Map]=imread('pointsur.bmp','bmp');% 240 lines by 320 columns

X1=X(:,:,1);
figure
colormap(gray(256))
imshow(X1)

[counts,X]=imhist(X1);
figure
stem(X,counts)
p=polyfit(X,counts,30);
r=roots(p);
maximo=max(counts);
threshold=find(counts==maximo)
rr=(r<threshold).*r;
newThreshold=abs(max(real(rr)))+10
[x,y]=size(X1);

92

XX1=double(X1);
Y=(XX1<newThreshold).*(XX1>10);
Y=double(Y);
Y=Y*255;

figure
colormap(gray(256))
imshow(Y)

resImg2 = bwmorph(Y,'spur');
figure
imshow(resImg2);
colormap(gray(256));

resImg3 = bwmorph(resImg2,'clean');
figure
imshow(resImg3);
colormap(gray(256));

resImg4 = bwmorph(resImg3,'fill');
figure
imshow(resImg4);
colormap(gray(256));

[resImg5,maps1]=bwlabel(resImg4,4);
resImg6=zeros(size(Y));
maximo=0;
for i=1:maps1
 tempMap=(resImg5==i);
 total=sum(sum(tempMap));
 if (total>maximo)
 resImg6=tempMap;
 maximo=total;
 end
end
figure
colormap(gray(256))
imshow(resImg6)

resImg7 = bwfill(resImg6,'holes');
figure
imshow(resImg7);
colormap(gray(256));

%Original is 240x320 but I need to save 210x280
X1=resImg7(16:(x-15),41:y);
[x,y]=size(X1);

ab1=zeros(x*y,1);
ab1=resImg7(:);

save ab1 ab1;
%===
% End of file segmentation.m

93

%===
% Naval Postgraduate School - CA
%
% Type : Main program
% Name : createTestSet.m
% Function : Creates 05 mat files containing the silhouettes
% of each ship for increments of one degree in azimuth and
elevation
% then plots the errors
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

azAngleInc=1;%5; % ==> 36 azimuth angles
eleAngleInc=15;% ==> 10 elevation angles
totalAzimuth=180/azAngleInc;% ==>180
totalElevation=2%4;%10;
totalColumns=totalAzimuth*totalElevation;%each column means one view ==>
36*10=360 silhouettes
totalLines=12; %number of moment functions

rows=210;
columns=280;

resultSet=zeros(totalAzimuth,totalElevation);

1
%aircraft carrier
[verts,faces]=aircarrier;
rightResult=1;
resultSet= findResultSet(verts,faces,azAngleInc,eleAngleInc,rightResult);

aircarrierResultSet=resultSet;
save aircarrierResultSet aircarrierResultSet;
clear aircarrierResultSet;

2
%destroyer
[verts,faces]=destroyer;
rightResult=2;
resultSet= findResultSet(verts,faces,azAngleInc,eleAngleInc,rightResult);

destroyerResultSet=resultSet;
save destroyerResultSet destroyerResultSet;
clear destroyerResultSet;

3
%frigate
[verts,faces]=frigate;
rightResult=3;
resultSet= findResultSet(verts,faces,azAngleInc,eleAngleInc,rightResult);

frigateResultSet=resultSet;
save frigateResultSet frigateResultSet;
clear frigateResultSet;

4
%point sur
[verts,faces]=pointsur;

94

rightResult=4;
resultSet= findResultSet(verts,faces,azAngleInc,eleAngleInc,rightResult);

pointsurResultSet=resultSet;
save pointsurResultSet pointsurResultSet;
clear pointsurResultSet;

5
%merchant
[verts,faces]=merchant;
rightResult=5;
resultSet= findResultSet(verts,faces,azAngleInc,eleAngleInc,rightResult);

merchantResultSet=resultSet;
save merchantResultSet merchantResultSet;
clear merchantResultSet;

pause

load aircarrierResultSet1
temp=aircarrierResultSet;
load aircarrierResultSet1
temp=[temp,aircarrierResultSet];
aircarrierResultSet=temp;
save aircarrierResultSet aircarrierResultSet;

load destroyerResultSet1
temp=destroyerResultSet;
load destroyerResultSet1
temp=[temp,destroyerResultSet];
destroyerResultSet=temp;
save destroyerResultSet destroyerResultSet;

load frigateResultSet1
temp=frigateResultSet;
load frigateResultSet1
temp=[temp,frigateResultSet];
frigateResultSet=temp;
save frigateResultSet frigateResultSet;

load pointsurResultSet1
temp=pointsurResultSet;
load pointsurResultSet1
temp=[temp,pointsurResultSet];
pointsurResultSet=temp;
save pointsurResultSet pointsurResultSet;

load merchantResultSet1
temp=merchantResultSet;
load merchantResultSet1
temp=[temp,merchantResultSet];
merchantResultSet=temp;
save merchantResultSet merchantResultSet;

%aircraft carrier
figure
azimuthAngle=[-90:1:89];
errorAircarrier=sum(aircarrierResultSet');
errorPercent=(errorAircarrier/4)*100;

95

newAzimuthAngle=[-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-30,-
15,0,15,30,45,50,55,60,65,70,75,80,85];
newErrorPercent1=errorPercent(1:5:44);
newErrorPercent2=errorPercent(45:15:136);
newErrorPercent3=errorPercent(140:5:179);
newErrorPercent=[newErrorPercent1,newErrorPercent2,newErrorPercent3];

plot(newAzimuthAngle,newErrorPercent,'or')
hold
plot(azimuthAngle,errorPercent)
xlabel('azimuth angle')
ylabel('error(%)')
title('Aircraft Carrier Testing Results (adding all 4 elevation angles)')
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct
classified ==> 642 (89.2%)');

figure
elevationAngle=[0:15:46];
errorAircarrier=sum(aircarrierResultSet);
errorPercent=(errorAircarrier/180)*100;
newElevationAngle=[0:15:46];
newErrorPercent=errorPercent(1:1:4);
plot(newElevationAngle,newErrorPercent,'or')
hold
plot(elevationAngle,errorPercent)
xlabel('elevation angle')
ylabel('error(%)')
title('Aircraft Carrier Testing Results (adding all 180 azimuth angles)')
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct
classified ==> 642');

%Destroyer
figure
azimuthAngle=[-90:1:89];
errorDestroyer=sum(destroyerResultSet');
errorPercent=(errorDestroyer/4)*100;

newAzimuthAngle=[-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-30,-
15,0,15,30,45,50,55,60,65,70,75,80,85];
newErrorPercent1=errorPercent(1:5:44);
newErrorPercent2=errorPercent(45:15:136);
newErrorPercent3=errorPercent(140:5:179);
newErrorPercent=[newErrorPercent1,newErrorPercent2,newErrorPercent3];

plot(newAzimuthAngle,newErrorPercent,'or')
hold
plot(azimuthAngle,errorPercent)
xlabel('azimuth angle')
ylabel('error(%)')
title('Destroyer Testing Results (adding all 4 elevation angles)')
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct
classified ==> 698 (96.9%)');

figure
elevationAngle=[0:15:46];
errorDestroyer=sum(destroyerResultSet);
errorPercent=(errorDestroyer/180)*100;
newElevationAngle=[0:15:46];
newErrorPercent=errorPercent(1:1:4);
plot(newElevationAngle,newErrorPercent,'or')

96

hold
plot(elevationAngle,errorPercent)
xlabel('elevation angle')
ylabel('error(%)')
title('Destroyer Testing Results (adding all 180 azimuth angles)')
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct
classified ==> 698');

%Frigate
figure
azimuthAngle=[-90:1:89];
errorFrigate=sum(frigateResultSet');
errorPercent=(errorFrigate/4)*100;
newAzimuthAngle=[-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-30,-
15,0,15,30,45,50,55,60,65,70,75,80,85];
newErrorPercent1=errorPercent(1:5:44);
newErrorPercent2=errorPercent(45:15:136);
newErrorPercent3=errorPercent(140:5:179);
newErrorPercent=[newErrorPercent1,newErrorPercent2,newErrorPercent3];
plot(newAzimuthAngle,newErrorPercent,'or')
hold
plot(azimuthAngle,errorPercent)
xlabel('azimuth angle')
ylabel('error(%)')
title('Frigate Testing Results (adding all 4 elevation angles)')
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct
classified ==> 666 (92,5%)');

figure
elevationAngle=[0:15:46];
errorFrigate=sum(frigateResultSet);
errorPercent=(errorFrigate/180)*100;
newElevationAngle=[0:15:46];
newErrorPercent=errorPercent(1:1:4);
plot(newElevationAngle,newErrorPercent,'or')
hold
plot(elevationAngle,errorPercent)
xlabel('elevation angle')
ylabel('error(%)')
title('Frigate Testing Results (adding all 180 azimuth angles)')
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct
classified ==> 666');

%Pointsur
figure
azimuthAngle=[-90:1:89];
errorPointsur=sum(pointsurResultSet');
errorPercent=(errorPointsur/4)*100;
newAzimuthAngle=[-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-30,-
15,0,15,30,45,50,55,60,65,70,75,80,85];
newErrorPercent1=errorPercent(1:5:44);
newErrorPercent2=errorPercent(45:15:136);
newErrorPercent3=errorPercent(140:5:179);
newErrorPercent=[newErrorPercent1,newErrorPercent2,newErrorPercent3];
plot(newAzimuthAngle,newErrorPercent,'or')
hold
plot(azimuthAngle,errorPercent)

97

xlabel('azimuth angle')
ylabel('error(%)')
title('Pointsur Testing Results (adding all 4 elevation angles)')
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct
classified ==> 644 (89.4%)');

figure
elevationAngle=[0:15:46];
errorPointsur=sum(pointsurResultSet);
errorPercent=(errorPointsur/180)*100;
newElevationAngle=[0:15:46];
newErrorPercent=errorPercent(1:1:4);
plot(newElevationAngle,newErrorPercent,'or')
hold
plot(elevationAngle,errorPercent)
xlabel('elevation angle')
ylabel('error(%)')
title('Pointsur Testing Results (adding all 180 azimuth angles)')
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct
classified ==> 644');

%Merchant
figure
azimuthAngle=[-90:1:89];
errorMerchant=sum(merchantResultSet');
errorPercent=(errorMerchant/4)*100;
newAzimuthAngle=[-90,-85,-80,-75,-70,-65,-60,-55,-50,-45,-30,-
15,0,15,30,45,50,55,60,65,70,75,80,85];
newErrorPercent1=errorPercent(1:5:44);
newErrorPercent2=errorPercent(45:15:136);
newErrorPercent3=errorPercent(140:5:179);
newErrorPercent=[newErrorPercent1,newErrorPercent2,newErrorPercent3];
plot(newAzimuthAngle,newErrorPercent,'or')
hold
plot(azimuthAngle,errorPercent)
xlabel('azimuth angle')
ylabel('error(%)')
title('Merchant Testing Results (adding all 4 elevation angles)')
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct
classified ==> 634 (88.1%)');

figure
elevationAngle=[0:15:46];
errorMerchant=sum(merchantResultSet);
errorPercent=(errorMerchant/180)*100;
newElevationAngle=[0:15:46];
newErrorPercent=errorPercent(1:1:4);
plot(newElevationAngle,newErrorPercent,'or')
hold
plot(elevationAngle,errorPercent)
xlabel('elevation angle')
ylabel('error(%)')
title('Merchant Testing Results (adding all 180 azimuth angles)')
legend('Training set ==> 96','Testing set ==> 720','Silhouettes correct
classified ==> 634');
%===
% End of file createTestSet.m

98

%===
% Naval Postgraduate School - CA
% Type : Procedure
% Name : findResultSet.m
% Function : returns a vector with the size of all the viewangles being
tested
% where "1" will mean misclassified and "0" will mean correct
classified
% Date 01 march 2001
% Version : 1.0
% Author : Jorge Amaral Alves, LCDR (Brazilian Navy)
%===

function resultSet = findResultSet(
verts,faces,azAngleInc,eleAngleInc,rightResult);

totalAzimuth=180/azAngleInc;
totalElevation=2;%4;%10;%90/eleAngleInc;
totalColumns=totalAzimuth*totalElevation;%each column means one view
totalLines=12; %number of moment functions

resultSet= zeros(totalAzimuth,totalElevation);

trainingSet= zeros(totalLines,1);

rows=210;
columns=280;
silhouettes=zeros(rows*columns,totalColumns);

figNumber=figure(...
 'Name','Silhouette', ...
 'Position',[120 120 280 210]);% matriz => 210rows X 280columns

figure(figNumber)
patch('Vertices',verts,'Faces',faces);
view(3)
axis equal;
axis off
axis vis3d
lineCount=1;

load net;

azimuthCount=0;
for i=-90:azAngleInc:89 %azimuth popa until proa
 i
 azimuthCount=azimuthCount+1;
 elevationCount=0;
 %for j=0:eleAngleInc:16%46 %elevation
 for j=30:eleAngleInc:46 %elevation
 j
 elevationCount=elevationCount+1;
 view(i,j);
 [X,map]=capture; %[65, 65, ...
 X1=X-65; %[0 0 ...] max=1

 trainingSet(1:6,lineCount)=find_mom_functions(X1); % solid silhouette
 X2=X1*255; %[0 0 ...] max=255

99

 XX1=edge(X2,'prewitt'); %only the edges [0 0
0 ...] max=1
 trainingSet(7:12,lineCount)=find_mom_functions(XX1); %boundary

 A = sim(net,trainingSet);
 output=compet(A);
 result=find(output==1);%-1;
 result
 if result==rightResult
 resultSet(azimuthCount,elevationCount)=0;
 else
 resultSet(azimuthCount,elevationCount)=1;
 end
 end
end
%===
% End of file findResultSet.m

100

LIST OF REFERENCES

1. Richard, C., Hemani, H., “Identification of three-dimensional objects using Fourier
descriptors of the boundary curve”, IEEE-T Systems Man. Cybernet., SMC-4, Vol. 4,
pp. 371-378, 1974.

2. Bebis, G. N., Papadourakis, G. M., “Object Recognition using invariant object
boundary representations and neural network models”, Pattern Recognition 25, Vol.
1, pp. 25-44, 1992.

3. Ettinger, G., “Hierarchical object recognition using libraries of parameterized model
sub-parts”, Master’s Thesis, MIT, 1987.

4. Dubois, S., Glanz, F., “An autoregressive model approach to two-dimensional shape
classification”, IEEE-T on PAMI, Vol. 8, pp. 55-66, 1986.

5. Zahn, C. T., Roskies, R. Z., “Fourier descriptors for plane closed curves”, IEEE-T
Comput.21, Vol. 3, pp. 269-281, 1972.

6. Gorman, J., Mitchell, R., Kuhl, F., “Partial shape recognition using dynamic
programming”, IEEE-T on PAMI 10, Vol. 2, pp. 257-266, 1988.

7. Sadjadi, F., “Automatic object recognition: critical issues and current approaches”,
Proc. SPIE 1471, pp. 303-313, 1991.

8. Jaggi, S., Karl, C., Mallat, S., Willsky, A., “Silhouette recognition using high-
resolution pursuit”, Pattern Recognition 32, pp. 753-771, 1999.

9. Hu, M. K., “Visual pattern recognition by moment invariants”, IRE Trans. On
Information Theory, Vol. 8, pp. 179-187, 1962.

10. Casasend, D., Pauly, J., Fetterly, D., “IR ships classification using a new moment
pattern recognition concept”, Infrared Technology for Target Detection and
Classification, SPIE Vol. 302, pp. 126-133, 1981.

11. Rogers, S. K., Ruck, D. W., Kabrisky, M., Tarr, G. L., “Artificial neural networks for
automatic target recognition”, Applications of Artificial Neural Networks, SPIE Vol.
1294, pp. 1-12, 1990.

12. Teh, C., Chin, R., “On image analysis by the method of moments”, IEEE-T on PAMI,
Vol. 10, pp. 291-310, 1988.

13. Kashyap, R., Chellapa, R., “Stochastic models for closed boundary analysis:
representation and reconstruction”, IEEE-T Inf. Theory, Vol. 27, pp. 109-119, 1981.

101

14. Freeman, H., “Shape description via the use of critical points”, Pattern Recognition,
Vol. 10, pp. 159-166, 1978.

15. Jaggi, S., “Multiscale geometric feature extraction and object recognition”,
Ph.D.Thesis, Massachusetts Institute of Technology, 1997.

16. Dudani, S. A., Breeding, K. J., McGhee, R.B., “Aircraft identification by moment
invariants”, IEEE-T on Computers, Vol. 26, No.1, pp. 39-46, Jan. 1977.

17. Wallace, T. P., Wintz, P., “An efficient, three-dimensional aircraft recognition
algorithm using normalized Fourier descriptors”, Comput.Graphics Image Proc., Vol.
3, pp. 99-126, 1980.

18. Reeves, A. P., Prokop, R. J., Andrews, S. E., Kuhl, F. P., “Three-dimensional shape
analysis using moments and Fourier descriptors”, IEEE-T on PAMI, Vol. 10, No. 6,
pp. 937-943, 1988.

19. Khotanzad, A., Lu, J., “Classification of invariant image representations using a
neural network”, IEEE-T on Acoustics, Speech, and Signal Processing, Vol. 38, No.
6, pp. 1028-1038, 1990.

20. Reddi, S. S., “Radial and angular moment invariants for image identification”, IEEE-
T on PAMI, Vol. 3, pp. 240-242, 1981.

21. Lippman, R., “An introduction to computing with neural nets”, IEEE ASSP Mag., pp.
109-119, April 1987.

22. Carpenter, G., “Neural network models for pattern recognition and associative
memory”, Neural Networks, Vol. 2, pp. 243-257, 1989.

23. Fahlman, S., Hilton, G., “Connectionist architectures for artificial intelligence”, IEEE
Comput., pp. 100-109, 1987.

24. Sejnowski, T., Rosenberg, C., NETtalk: a parallel network that learns to read aloud,
J.A.Anderson and E.Rosenfeld Neurocomputing Foundations, MIT Press, Cambridge,
MA, 1988.

25. Perantonis, S. J., Lisboa, J. G., “Translation, rotation, and scale invariant pattern
recognition by high-order neural network and moment classifiers”, IEEE-T on Neural
Networks, Vol. 3, No. 2, pp. 241-251, March 1992.

26. Papadourakis, G. M., Bebis, G., Georgiopoulos, M., “Machine printed character
recognition using neural networks”, Int. Neural Network Conf., Paris, 1990.

27. Touretzky, D., Pomerleau, D., “What’s hidden in the hidden layers?”, Byte Mag., pp.
227-233, 1989.

102

28. Rumelhart, D. E., McClelland, J. L. and the PDP, Explorations in the Microstructure
of cognition, Vol. 1: Foundations, MIT Press, Cambridge, MA, 1986.

29. Bebis, G., Papadourakis, G. M., Georgiopoulos, M., “Backpropagation: increasing
rate of convergence by predictable pattern loading”, Intell. Syst, Rev. 1, pp. 14-30,
1989.

30. Jane’s Information Group Ltd, Jane’s Fighting Ships, 1999.

31. Jane’s Information Group Ltd, Jane’s Merchant Ships, 1999.

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

BIBLIOGRAPHY

Anderson, James A., An Introduction to Neural Networks, Third Printing, A Bradford
Book, MIT Press, 1997.

Russ, John C., The Image Processing Handbook, Third Edition, CRC Press with IEEE
Press, 1998.

The MathWorks Inc., Learning MATLAB V.5.3, 1999.

Looney, Carl G., Pattern Recognition Using Neural Networks Theory and Algorithms for
Engineers and Scientists, Oxford University Press, 1997.

105

THIS PAGE INTENTIONALLY LEFT BLANK

106

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center... 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library.. 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. National Reconnaissance Office ... 1
14675 Lee Road
Chantilly, Virginia 20151-1715

4. Professor Neil C. Rowe, Code CS/Nr... 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Prof. Robert B. McGhee, Code CS/Mz... 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

6. Director, Instituto de Pesquisas da Marinha ... 1
Rua Ipiru 2, Ilha do Governador
21931-090 Rio de Janeiro - RJ
BRAZIL

7. Head of Research, Instituto de Pesquisas da Marinha .. 1
Rua Ipiru 2, Ilha do Governador
21931-090 Rio de Janeiro - RJ
BRAZIL

8. Diretoria de Ensino da Marinha ... 1
via: Brazilian Naval Commission
5130 MacArthur Boulevard, NW
Washington, D.C. 20016-3344

9. Diretoria de Telecomunicações da Marinha .. 1
via: Brazilian Naval Commission
5130 MacArthur Boulevard, NW
Washington, D.C. 20016-3344

107

10. Director, Diretoria de Engenharia Naval .. 1
Rua Primeiro de Março, 118 - 10º andar - Centro
20.010-000 Rio de Janeiro - RJ
BRAZIL

11. Diretoria de Engenharia Naval, Library.. 1
Rua Primeiro de Março, 118 - 10º andar – Centro
20.010-000 Rio de Janeiro - RJ
BRAZIL

12. Diretoria de Sistemas de Armas da Marinha, Library .. 1
Rua Primeiro de Março, 118 - 19º andar - Centro
20.010-000 Rio de Janeiro - RJ
BRAZIL

13. Instituto Militar de Engenharia, Library ... 1
Praça General Tibúrcio 80, Praia Vermelha
22290-270 Rio de Janeiro - RJ
BRAZIL

14. Centro Técnico Aeroespacial, Library.. 1
Praça Mal. Eduardo Gomes 50, Vila das Acácias
12228-904 São José dos Campos - SP
BRAZIL

15. CC(EN) Jorge Amaral Alves .. 3
Rua Acacio Santos 110, Osvaldo Cruz
21550-250 Rio de Janeiro - RJ
BRAZIL

108

	I. INTRODUCTION
	A. AUTOMATIC TARGET RECOGNITION
	B. APPLICATIONS OF AUTOMATIC OBJECT RECOGNITION
	C. PROJECT GOALS

	II. FEATURE SELECTION AND MOMENT INVARIANTS
	A. OVERVIEW
	B. MOMENT INVARIANTS
	C. FEATURE VECTOR

	III. THE ARTIFICIAL NEURAL NETWORK (ANN) CLASSIFIER
	A. MOTIVATION
	B. MULTILAYER ANN AND THE BACKPROPAGATION RULE

	IV. EXPERIMENT DESCRIPTION
	A. PROGRAMMING ENVIRONMENT
	B. THE THREE-DIMENSIONAL SHIP MODEL DATABASE
	1. The Three-Dimensional Ship Modeling
	2. Viewpoint Control
	3. Orthographic Projection

	C. THE REAL FLIR IMAGES DATABASE
	1. Domain Issues
	2. Segmentation

	D. TRAINING PHASE OF THE NEURAL NETWORK CLASSIFIER
	E. TESTING PHASE
	F. PROGRAMS DEVELOPED

	V. RESULTS FROM EXPERIMENTATION
	A. EVALUATION STRUCTURE
	B. FIRST EXPERIMENT
	C. SECOND EXPERIMENT
	D. THIRD EXPERIMENT
	E. FOURTH EXPERIMENT
	F. FIFTH EXPERIMENT

	VI. CONCLUSIONS

